CSE 3402 3.0 Intro. to Concepts of Al Dept. of Computer SaefdEngineering
Winter 2010 York University

Assignment 2
Total marks: 100.

Out: February 16
Due: March 5 at 14:00

Note 1: To hand in your report for this assignment, submleicteonicallyandsubmit a printout either
in the 3402 drop box in CSEB or by bringing it to class by thedliee. To submit electronically, use
the following Prism lab command:

subm t 3402 a2 files or directory

Your Prolog code should work correctly on Prism.

Note 2: Your report for this assignment should be the reduylbar own individual work. Take care
to avoid plagiarism (“copying”). You may discuss the probgewith other students, but do not take
written notes during these discussions, and do not sharewriiten solutions.

In this assignment, you are supplied with some starter coddrave to design a program that plays a
slightly modified version of Othello against a human user.

1 Modified Othello

Othello is a boardgame that is played with black and whiteesglaced on a chessboard. The players
(black and white) take turns placing stones on the boardashgnally, one of the players might have
nowhere to place their colored stone. In this case their aalig move is to play a “pass” where they
do not place any stones. The next player then takes their Austate where neither player can place
a stone is a terminal state. In the original Othello, the wirof a terminal state is the player who has
more stones on the board. Howevar,the modified version that you will implement, the winnea of
terminal state is the player who h&ess stoneson the board A tie is declared in a terminal state if
the number of white and black stones are equal.

The game begins with four stones placed in a square in thelenaddhe grid, two white stones
and two black stones (Figure 1). Player 1 (black) makes therfiove.

To understand rules of the game, it is useful to think of thedotions, N (north), NE (north-east),
E (east), SE (south-east), S (south), SW (south-west), VEtjvamd NW (north-west). Viewing the
top of the board as being North, these directions specifmé&slmoving away from any position on
the board.

At each player’s turn, the player may place a stone (of herfoh any square of the board such
that:

a b c d e £ g h

L B T, B = "R B =]
L B T, B = "R B =]

a b o d e £ g h
Starting position

Figure 1: Initial State

a b o d e £ g h

[l I = B O T B = . R =]
[l I = B O T B = . R =]

a b c d e £ g h

‘Where dark may play

Figure 2: Possible moves of player 1 (black)

e Along at least one of the 8 direction from the squar@e have a sequence of one or more
opponent stones followed by the player’s stone (with no graguares in between). Note that
we can start looking for legal places to put our stone by aw®rgig only those squares that are
adjacent (in one of the directions) to an opponent’s stone.

For example, from the initial state black can play in any adipons indicated by light-gray pieces
in Figure 2.
After placing their stone, the board is updated as follows:

e Looking along all 8 directions, any sequence of opponemtest@hat are now bracketed by the
player’s newly placed stone and some previously placedepkgtone (again with no empty
squares in between) are now flipped in color to become plagees. Note that placing a single
stone could cause many opponent stones to flip in differeattions.

For example, if black decided to put a piece in the topmosttion (6-d on the example figures),
one white piece gets turned over, so that the board is transfibto the state as shown in 3.

a b c d e £ g h

L B T, B = "R B =]
L B T, B = "R B =]

a b o d e £ g h
Adfter dark play

Figure 3: State after the move of player 1 (black).

a b o d e £ g h

[l S T R ST B = . R =]
[l S T R ST B = . R =]

a b o d e £ g h

‘Where light may play

Figure 4: Possible moves of player 2 (white)

Now white (player 2) plays. All of white’s possibilities atis time are show as gray stones in
Figure 4.

If white moves to 4-c this will reverses one black piece aswshim Figure 5.

Othello is also commonly callegversi, and to get a better feel for the game you can play it at a
number of on-line sites. For examplg,t p: / / ganeknot . conl pg/ r ever si . ht mshows also
the allowed moves when it is your turn. Remember howeverithiiis assignment the winner is the
player with thefewer stones on the board at the end.

2 The Assignment

You will be provided with the following PROLOG code (availalfor download from the course web
page (follow the Assignment 2 link) :

e An implementation of an interactive depth-first minimax gatree search routine in the file
pl ay. pl . This file will not work on its own as it needs the definitions sdveral game-

3

a b o d e £ g h

[l I = B O T B = . R =]
[l I = B O T B = . R =]

a b c d e £ g h

After light play

Figure 5: State after the move of player 2 (white).

specific predicates. You will not change this file, but plesessed carefully the code there to
see what predicates must be implemented and how they ararudestree search. To invoke
the interactive shell you need to type the quphay. Assuming all required predicates have
already been defined, the interactive game playing shdlpwoimpt the human player to input
moves. The player can enter a move (for this game a positiodika“[1,3]"), which will be
then checked for validity (using a predicate you have toeyrifo play a “pass” move simply
enter ‘n’. Yourval i dnove predicate should check the proposed move allowing a pags onl
if no other move is legal. Note thatead(Pr oposed) is used to read the user's move—this
will bind the variablePr oposed to anything the user enters; you have to check that they have
entered a valid move in the right syntax (i.e. a pair of nureleerclosed in brackets, or the
character ‘n’). When it is the computer’s turn the engind woke a mini-max search for
the best move. This search is done to a bounded depth, ancapaetthe depth bound. You
should set a bound that yields reasonable performance.

Some starter code for your Othello implementation is in tleedfi hel | 0. pl . You are given

a prespecified state representation of the game as a listaf Tihe 6x6 board is treated as a two
dimensional array indexed by a pair of numbEXsY] where these numbers are in the range
0-5. The file also contains a number of utility routines tHevayou to set and get indexed
squares on the board.

You have to define various predicates to interface with threegtree search routine. This in-
volves writing code to generate moves in the game, testireitven or not positions are terminal,
evaluating the heuristic merit of positions in the game, &wll documentation on the predi-
cates needed by the game tree search routine is provideel la¢ginning of the filgl ay. pl .
Please do not change ay. pl , all your implementation must be doneathel | o. pl .

There is an example implementation of an interactive tocttee game in the filet t . pl where
player 1 (MAX) is a human and player 2 (Min) is the computerisTfample game illustrates
how to implement the routines required by the game tree Bedrcrun the game, simply load

4

flettt. pl and enter the quenyl ay. You will be prompted to choose your first move (i.e.
a number between 1 to 9 followed by a period). Then, computiéchoose a move, and it’s
your turn again, and so on.

The assignment is broken into 3 main parts: (1) implemerdipgogram to play Othello on a 6x6
board, (2) designing a heuristic function, and (3) addimdpalbeta pruning to the game tree search
routine. These 3 main parts are described in more detamhbé&lease note that your implementation
should contain sufficient comments and not be contortedemyeomplex.Bad implementation style
may cause deductions of up to 10%

2.1 [75%] Part I: Othello

Implement the Othello game by adding your code to the suptarter fileot hel | 0. pl . In
order to accomplish this you have to implement several peges (feel free to define you own helper
predicates for more complex predicates lilext St at e):

l.initialize(lnitial State,Initial Plyr)

2. Wi nner(State, Plyr)

3.tie(State)

term nal (State)

moves(Pl yr, St at e, M/Li st)

next St at e(Pl yr, Move, St at e, NewSt at e, Next Pl yr)
val i dnmove(Pl yr, St at e, Proposed)

h(St at e, Val)

© ©®© N o 0 bk

| ower Bound(B)
10. upper Bound(B)

Most of these predicates are based on the given state rapagsa. Utilize the given utilities
(e.g. get and set a value at a position) to determine the ljesséxt moves: you must implement
the predicatemoves(Pl yr, St at e, M/Li st) so that it returns a listwLi st of all legal moves
Pl yr can make in the given staf at e. The list of moves returned by this predicate should be
sorted by position in order left to right, top to bottornk.qg., if a move into position§l, 1], [0, 0],
2,71,[0,2], [1, 5] are all possible, then you should return this list of movethaorder|0, 0], [0, 2],
[1,1], [1, 5], [2, 7]

Similarly, you must implement the predicatext St at e(Pl yr, Move, St at e, NewSt at e,
Next Pl yr) that changes the current boaé8tat e by playingMove. (Remember that applying a
move can cause changes along several different directidosL can use the given helper predicate
showsSt at e to debugnext St at e. In your implementation account for the fact that the ganre ca
end with a tie and implement thh@ e andwi nner predicates. Note that the player with less stones
at the end is the winner.

Note that it is necessary to accommodate null moves (sirere tire positions where one player
cannot move) both in the user input and during the minimarckea simple way of accomplishing
this is to havaroves return the lis{ n] in this case, and whemext St at e is passed an move it
can return an unchanged state as the new state, and the latyargs the new player.

The predicatéh(St at e, Val) requires that you design a heuristic function for the ganee S
Part Il before doing so.

What to hand in:

1. ‘Physical CopYA listing of your code (all relevant predicate listings). Bere to document
your predicate definitions well.

2. ‘Physical Copy Download and print filet est boar ds. pdf . Write down your name and
student number on the top of the page. Download fdet boar ds. pl and perform the tests
requested in theest boar ds. pdf for the MiniMax algorithm. Fill out the top table

3. |Electronic Copy Submit yourot hel | 0. pl (using thesubnm t command). Make sure you
fill out the identification portion at the beginning of the fileo not include any of the code in

pl ay. pl).

2.2 [15%] Part II: State Evaluation Function

As mentioned abovel ay. pl requires implementing the heuristic functib(S, V). If you decide
NOT to do part Il, to get credit for part I, you need to define ayv@mple heuristic instead: your
h(S, V) can returnt” = 0 for any non-terminal statd, and if S is a terminal state, must return a
positive value (say 100) for a win state, a negative valug {$80) for losing state, and O for a tie
state. Clearly, thig provides no guidance in the depth-bounded search.

If you decide to do part Il, you have to implement a smarterriséa function as described below.
In either case, note that the traces of your program requiredrt I, are based on the heuristic that
you implement.

Below, we give you some ideas of good heuristics for the pafOthello game. You have to
adjust these for our modified version of the game where thegeplaith the fewest stones on the board
wins at the end.

2.2.1 Heuristic Functions for the Original Othello Game

Since at the end, the player with more stones wins the gamejyght think that the evaluation
functionh(s) = V1-V2 (wherel/1 andV'2 are the number of stones for player 1 and 2, respectively),
is ideal. This is only true if we expand all nodes in the seareh to reach the terminal nodes (which
is practically impossible). For a non-terminal state, hgunore stones has no meaning (it could even
be worse as seen in Figure 6) since many flips might occur uréunoves.

a b o 4 e £ g h

a b c d e £ g h

Figure 6: Maximum stones is not a good strategy: white has mdwe stones, while black has only
1. Itis black’s turn. So, she puts a stone in a8, white has $g,ghen black puts a stone in h1, white
passes, black plays h8, while passes, and finally black ptayBlack wins: 40 black stone versus 24
white stones!

Instead, we focus more on tlséable stonesn the board, i.e. those stones that cannot be flipped
anymore. Corner positions, once played, remain immunegpifig for the rest of the game (because
there can never be an opposite color stone behind them tee@dhp): thus a player can use a piece
in a corner of the board to anchor groups of pieces (startiitlg thhe adjacent edges) permanently.
So capturing a corner often proves an effective strategynvine opportunity arises. More generally,
a piece is stable when, along all four aXesrizontal, vertical, and each diagonal), it is either on a
boundary of the game board, or in a filled row, or next to a stai#ce of the same color. The more
stable stones you have (and the less stable stone your appg@® the better. So, you may count the
number of stable stones for both players and use them tood@ood measure to evaluate states.

Another idea ignobility. An opponent playing with reasonable strategy will not ssilgaelin-
quish the corner or any other good moves for you to play. Schéese these good moves, you must
force your opponent to play moves which make available tigosel moves. The best way to achieve
this involves reducing the number of moves available to yapponent. If you consistently restrict
the number of legal moves your opponent can make, then sootater they will have to make an
undesirable move. An ideal position involves having alliypieces in the center surrounded by your
opponent’s pieces. In such situations you can dictate wloa&kesyour opponent can make.

Note that the above ideas are with respect to the originatl@titaken from Wikipedia) and may
require some adjustment to be applicable to our modifiedaeis the game. It is not required, but

7

if you want, you can go beyond these ideas. You can do your easarch to find a wide range of
other good heuristics (for example, a good place to start is
http://ww. radagast. se/ ot hel |l o/ Hel p/ strategy. ht m). We may give up to 10%
in bonus marks for implementing an advanced heuristic fanct

What to hand in:

1. ‘Physical Copy, at most 1 papAn Englishdescription and justificatiomf the heuristic you
implemented. You are welcome to do a little bit research afryawn to come up with a better
evaluation functionMake sure to cite all references you used (if any) for thisstjoa

2. ‘ Physical Cop)N/A listing of the code implementing your heuristic function.

3. ‘Electronic Cop*Your implementation of the predicatemust be in theot hel | 0. pl . So,
no extra submission is required. You just subatihel | 0. pl as requested in Part .

2.3 [10%] Part lll: Alpha-Beta Pruning

Thepl ay predicate is based on depth-bounded, depth-first, minivaxation; but it does no prun-
ing. This part asks you to replace the predicateval (Pl yr, St at e, Val ue, Move, Dept h,

St at esSear ched) with a new predicatebnmeval , that evaluates states using minimax with
alpha-beta pruning. The arguments to this predicate cai Yo own choosing.

Place your alpha-beta implementation in a file cabdxpl ay. pl . This file should contain all
of the functionality ofpl ay. pl except thabmreval replacesmeval . To do this, first copy
pl ay. pl into a new file callechbpl ay. pl , and then make necessary changes there.

What to hand in:

1. | Physical CopyA listing of your alpha-beta implementation. Be sure to doeat your code.

2. ‘Physical Cop)if Repeat the tests you did in part |, but now based on your dheta-search
engine. Complete the table at the bottom of filest boar ds. pdf accordingly. Also, on
page 2 ot est boar ds. pdf , write one or two paragraphs discussing your results onvtbe t
tables.

3. |Electronic Cop*Submit the fileabpl ay. pl electronically.

GOOD LUCK and Have Fun!

