
A4-1Gunnar Gotshalks

Design Patterns

A4-2Gunnar Gotshalks

On Design Patterns

• A design pattern systematically names, explains
and evaluates an important and recurring design
problem and its solution

• Good designers know not to solve every problem
from first principles

They reuse solutions

• This is very different from code reuse

• Software practitioners have not done a good job of
recording experience in software design for others to
use

A4-3Gunnar Gotshalks

Classification

• Structural
Decouple interface and implementation of classes
and objects

Adapter, Composite, Decorator, Facade

• Behavioural
Dynamic interaction among classes and objects

Command, Iterator, Master-Slave, State, Visitor

• Creational
Initializing and configuring classes and objects

Abstract Factory, Builder, Prototype, Singleton

A4-4Gunnar Gotshalks

Acknowledgement

Descriptions of many patterns
based on

Design Patterns
by

Erich Gamma, Richard Helm
Ralph Johnson, John Vlissides

Addison-Wesley, 1995.
ISBN 0-201-63361-2

A4-5Gunnar Gotshalks

Descriptive Template

• Name

• Intent
What does the pattern do? What problems does it
address?

• Motivation
A scenario of pattern applicability

• Applicability
In which situations can this pattern be applied

• Participants
Describe participating classes/objects

A4-6Gunnar Gotshalks

Descriptive Template – 2

• Scenario – Collaborations
How do the participants carry out their
responsibilities?

• Architecture
Graphical representation of the pattern

• Consequences
How does the pattern support its objectives?

• Implementation
Pitfalls, language specific issues

• Examples
From real systems

• See also
Pointers to related patterns

A4-7Gunnar Gotshalks

Design Patterns – Definition

“We propose design patterns as a new mechanism
for expressing object oriented design experience.
Design patterns identify, name and abstract
common themes in object oriented design. They
capture the intent behind a design by identifying
objects, collaborations and distribution of
responsibilities.”

Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides ,“Design Patterns”, Addison-
Wesley, 1995. ISBN 0-201-63361-2

A4-8Gunnar Gotshalks

Others On Design Patterns

• Christopher Alexander
“Each person describes a problem which occurs
over and over and over again in our environment
and then describes the core of the solution to that
problem, in such a way that you can use this
solution a million times over, without ever doing it
the same way twice.”

• Cunningham
“Patterns are the recurring solutions to the
problem of design. People learn patterns by
seeing them and recall them when need be without
a lot of effort”

A4-9Gunnar Gotshalks

Others On Design Patterns – 2

• Booch
“A pattern is a solution to a problem in a specific
context. A pattern codifies specific knowledge
collected from experience in a domain.”

A4-10Gunnar Gotshalks

Patterns & Frameworks

• Patterns support reuse of software architecture and
design

They capture static and dynamic structures of
successful solutions to problems. These problems
arise when building applications in a particular
domain

• Frameworks support reuse of detailed design and
program source text

A framework is an integrated set of components
that collaborate to provide a reusable architecture
for a family of related applications

A4-11Gunnar Gotshalks

Patterns & Frameworks – 2

• Frameworks tend to be less abstract than patterns

• Together, design patterns and frameworks help to
improve key quality factors like reusability,
extensibility and modularity

A4-12Gunnar Gotshalks

Becoming a Master Designer

• Learn the rules
» algorithms and data structures
» languages
» mathematics

• Learn the principles
» structured and modular programming
» theory of software engineering
» OO design and programming

• Study the designs of masters
» Design patterns must be understood, memorized

and applied
» Thousands of existing patterns

Are they all memorable?

A4-13Gunnar Gotshalks

Design Patterns Solve Design Problems

• Finding appropriate classes

• Determine class granularity
How abstract, how correct

• Specify interfaces

• Specify implementation

• Put reuse to work
Client vs inheritance

• Relate run time and compile time structures
Program text may not reflect design

A4-14Gunnar Gotshalks

Design Patterns Solve Design Problems – 2

• Design for change is difficult

• Common problems
» Explicit object creation

Use name of interface, not name of
implementation

» Dependence of particular operations
Avoid hard coded operations

» Dependencies on hardware or software platforms
» Dependencies of object representation
» Dependencies on algorithms
» Tight coupling

A4-15Gunnar Gotshalks

Claims of the Pattern Community

• Well defined design principles have a positive impact
on software engineering
» Achievable reusability
» Provide common vocabulary for designers

Communicate, document, explore alternatives
» Patterns are like micro architectures

Useful for building small parts of a system
» Reduce the learning time for understanding class

libraries
» Avoid redesign stages by using encapsulated

experience

A4-16Gunnar Gotshalks

When to Use Patterns

• Solutions to problems that recur with variations
» No need for pattern if the problem occurs in only

one context
» Can we generalize the problem instance in which

we are interested?

• Solutions that require several steps
» Not all problems need all steps
» Patterns can be overkill if solution is a simple

linear set of interactions

• Solutions where the solver is more interested in “does
there exist a solution?” than in a solution’s complete
derivation

Patterns often leave out lots of detail

A4-17Gunnar Gotshalks

Key Principles

• Successful use of patterns and frameworks can be boiled
down to a few key principles
» Separate interface from implementation so each

can vary independently
» Determine what is common and what is variable

with an interface and an implementation
» Allow substitution of variable implementation via a

common interface. Use deferred classes and effect
them

• Don’t use blindly
Separating commonalties from variabilities should
be done on a goal by goal basis not exhaustively

It isn’t always worthwhile to apply them

A4-18Gunnar Gotshalks

Pattern Benefits

• Enable large scale reuse of software architectures

• Explicitly capture expert knowledge and design trade-
offs

• Help improve developer communication

• Help ease the the transition to OO methods

• High level abstraction that leaves out the details

A4-19Gunnar Gotshalks

Pattern Drawbacks

• Patterns do not lead to direct code reuse

• Patterns are often deceptively simple

• You may suffer from pattern overload

• Patterns must be validated by experience and debate
rather than automated testing

• Integrating patterns into a process is human intensive
rather than a technical activity

