
TB-1

Testing & Debugging

TB-2

Need for Testing

• Software systems are inherently complex
» Large systems 1 to 3 errors per 100 lines of code (LOC)

• Extensive verification and validiation is required to build
quality software
» Verification

> Does the software meet its specifications
» Validation

> Does the software meet its requirements

• Testing is used to determine whether there are faults in a
software system

TB-3

Need for Testing – 2

• The process of testing is to find the minimum number of
test cases that can produce the maximum number of
failures to achieve a desired level of confidence

• Cost of validation should not be under estimated

• The cost of testing is extremely high
» Anything that we can do to reduce it is worthwhile

TB-4

Testing Not Enough

• Exhaustive testing is not usually possible
» Testing can determine the presence of faults, never their

absence
Dikstra

• Test to give us a high level of confidence

TB-5

Test Strategy

• Identify test criteria
» What are the goals for comparing the system against its

specification
> Reliability, completeness, robustness

• Identify target components for testing
» In an OO system the classes and class hierarchies

• Generate test cases
» Produce test cases that can identify faults in an

implementation

• Execute test cases agains target components

• Evaluation
» If expected outputs are not produced, a bug report is

isssued

TB-6

Test Plans

• Specify a set of test input

• For each input give the expected output

• Run the program and document the actual output

• Example – square root program
» Input: 4.0
» Expected Output: 2.0
» Actual Output: 1.99999 looks all right

» Input: -4
» Expected Output: Invalid input
» Actual Output: 1.99999 Uh oh! problem here

TB-7

Black Box Testing – Data Coverage

• Testing based on input and output alone
» Do not consider underlying implementation

• Test cases are generated from the specification
» Pre and post conditions

• Specific kinds of black box testing
» Random testing

> Generate random inputs
> Easy to generate cases
> good at detecting failues
> Must be able to easily generate expected output

» Partition testing
> See next slides

TB-8

Partition Testing

• Cannot try all possible inputs
» Partition input into equivalence classes

> Every value in a class should behave similarly

• Test cases
> just before boundary
> just after a boundary
> on a boundary
> one from the middle of an equivalence class

• Loops
» Zero times through the body
» Once through the body
» Many times through the body

TB-9

Partition Testing – 2

• Example 1 – Absolute value – 2 equivalence classes
» Values below zero and values above zero
» 5 test cases: large negative, -1, 0, +1, large positive

• Example 2 – Tax rates – 3 equivalence classes
> 0 .. $29,000 at 17%
> 29,001 .. 35,000 at 26%
> 35,001 ... at 29%

» 13 Test cases
0 1 15,000 28,999 29,000 29,001 29,002
30,000
34,999 35,000 35,001 35,002 50,000

TB-10

Partition Testing – 3

• Example 3 – Insert into a sorted list -- max 20 elements
• About 25 test cases

» Boundary conditions on the list
> empty boundary – length 0, 1, 2
> full boundary – length 19, 20 , 21
> middle of range – length 10

» Boundary conditions on inserting
> just before & after first list element
> just before & after last list element
> into the middle of the list

• Suppose an error occurs when adding to the upper end of
a full list
» Devise additional test cases to test hypothesis

TB-11

White Box Testing

• Use internal properties of the system as test case
generation criteria

• Generate cases based on
» Statement blocks
» Paths

• Identify unintentional infinite loops, illegal paths,
unreachable program text (dead code)

• Need test cases for exceptions and interrupts

TB-12

Statement Coverage

• Make sure every statement in the program is executed at
least once

• Example
» if a < b then c = a+b ; d = a*b /* 1 */

 else c = a*b ; d = a+b /* 2 */
if c < d then x = a+c ; y = b+d /* 3 */
 else x = a*c ; y = b*d /* 4 */

• Statement coverage – can do with 2 tests
» Execute 1 & 3 with a < b & a+b < a*b

> a = 2 ; b = 5
» Execute 2 & 4 with a >= b & a*b >= a+b

> a = 5 ; b = 2

• Loops – only 1 test required
» Execute body at least once

1

3 4

2

T

T

F

F

TB-13

Statement Coverage – 2

• How do you know you have statement coverage?

• Instrument your program with an array of counters
initialized to zero

• Increment a unique counter in each block of statements

• Run your test

• If all counters are non zero then you have achieved
statement coverage

TB-14

Path Coverage

• Every path in the program is executed at least once

• Example
» if a < b then c = a+b ; d = a*b /* 1 */

 else c = a*b ; d = a+b /* 2 */
if c < d then x = a+c ; y = b+d /* 3 */
 else x = a*c ; y = b*d /* 4 */

• Path coverage – 4 tests
» Execute 1 & 3 with a < b & a+b < a*b

 a = 2 ; b = 5
» Execute 2 & 4 with a >= b & a*b >= a+b a = 5 ; b = 2
 Add for path
» Execute 1 & 4 with a < b & a+b >= a*b a = 0 ; b = 1
» Execute 2 & 3 with a >= b & a*b < a+b a = 1 ; b = 0

1

3 4

2

T

T

F

F

TB-15

Path Coverage – 2

• Loops – 3 tests required
» Execute body zero times, once in the path, many in the

path
> once is not enough as frequently first time through is

a special case

• Path coverage usually requires exponential increase in
tests as the number of choices and loops increases
» due to multiplication

> two loops in sequence – 9 tests
> three loops in sequence – 27 tests
> ten if....then...else in sequence – 1024 tests

TB-16

Path Coverage – 3

• Convert an integer represented as a decimal string to a
real number.
» ASCII string "123.456" ==> 123.456 in binary

• The EBNF fro the input
» Input ::= +[Spaces] [+ , -] [IntegerPart] ['.' [

DecimalPart]];
» IntegerPart ::= +[DecimalDigit];
» DecimalPart ::= +[DecimalDigit];
» Decimal Digit ::= ('0' , '1', '2' ,'3' ,'4' ,'5' ,'6' ,'7' ,'8' , '9');

TB-17

Path Coverage – 4

• The algorithm
» 1 Skip any leading spaces.
» 2 Determines what the sign of the number is.
» 3 Get the integer part of the number; determined by

scanning either the end of the number or a decimal
point.

» 4 Continue building the integer representation of the
input as if there was no decimal point, meanwhile
counting the number of decimal digits.

» 5 Compute the real number from the sign, integer
representation and count of decimal digits.

TB-18

Path Coverage – 5

• 2 tests are sufficent for statement coverage
» positive and negative real numbers.

• 162 tests estimated for all paths.
» 3 cases first loop – step 1 skip lead spaces
» 3 cases first if statement – step 2 determine sign
» 3 cases second loop – step 3 get integer part
» 2 cases second if statement – step 3 check decimal

point
» 3 cases third loop – step 4 get decimal part

> Not all cases are possible -- for example if there is no
'.' (second if statement), then the third loop cannot
not be executed one or many times, only zero times.

TB-19

Path Coverage – 6

• How to you know you have path coverage?

• As for statement coverage increment counters in each
block of statements

• Compare the pattern of non zero counters with the
expected statement blocks in each path

• Continue until every path pattern has been matched

TB-20

Top Down Testing

• Test upper levels of program first

• Use stubs for lower levels
» Stubs are dummy procedures that have "empty"

implementations – do nothing
> For functions return a constant value

» Test calling sequences for procedures and simple cases
for upper levels.

TB-21

Bottom Up Testing

• Use test drivers
» Have complete implementation of subprograms
» Create a special main program to call the subprograms

with a sequence of test cases
» Can be interactive, semi-interactive, or non-interactive

> See minimal output test program slides

TB-22

Mixed Top & Bottom Testing

• Use scaffolding
» Have some stubs
» Have some special test drivers
» Like the scaffolding around a building while it is being

built or repaired
» Not a part of the final product but necessary to complete

the task

TB-23

Regressive Testing

• Rerun all previous tests whenever a change is made
» Changes can impact previously working programs
» So retest everything
» Also must test the changes

TB-24

Minimal Output Testing

• Reading and comparing expected with actual output is
tedious and error prone

• Task should be automated – especially for regressive
testing

• Build the expected output into the test driver and compare
with the actual output

• Report only if expected ≠ actual
» Output states which test failed, the expected and the

actual outputs

• Successful test runs only output the message
» Tests passed

TB-25

Minimal Output Testing – 2

• Example checking a stack implementation
 Stack list = new Stack(); verifyEmpty("1", list);

list.add("a"); verifyL1("2", list, "[a]");
list.remove(); verifyEmpty("3", list);
list.add("a");
list.add("b"); verifyL2("4", list, "[b , a]");

 if (list.contains("c")) println("5 shouldn't contain c");
if (!list.contains("a")) println("6 should contain a");
if (!list.contains("b")) println("7 should contain b");

 list.add("c"); verifyL3("8", list, "[c , b , a]");
list.remove(); verifyL2("9", list, "[b , a]");
list.remove(); verifyL1("10", list, "[a]");
list.remove(); verifyEmpty("11", list);

• Verify routines do the appropriate test and output
messages

TB-26

Debug Flags

• When debugging it is useful to turn on and off various
features in a program
» Especially test output

• Create a Debug class that contains Boolean flags that can
be set, reset and toggled

• Use the flags in if statements that surround interesting
sections of your program

• For different test runs give different settings of true and
false to the flags

TB-27

Debug Flags – 2

• Example
 if Debug.flag0 then

 Block1
fi

 if Debug.flag1 then
 Block2
fi
if Debug.flag3 then
 Block3
 if Debug.flag4 then
 Block4
 fi
fi

• Depending upon the values of flag0 .. flag3 different
combinations of Block1 .. Block4 are executed

TB-28

Assertions

• Assertions can be put into programs using if...then
statements
» Some languages such as Eiffel have them built in

• The condition compares expected with actual values and
prints a message if the assertion fails

• Combined with a debug flag you can turn assertion
checking on and off depending on what you want to test
 if Debug.flag0 & expected ≠ actual then ... fi

TB-29

Inspections & Walkthroughs

• Manual or computer aided comparisons of software
development products
» specifications, program text, analysis documents

• Documents are paraphrased by the authors

• Walkthroughs are done by going through the execution
paths of a program, comparing its outputs with those of
the paraphrased documents

• Walkthrough team
» Usually 4-6 people
» Elicit questions, facilitate discussion
» Interactive process
» Not done to evaluate people

TB-30

Inspections & Walkthroughs – 2

• Psychological side effects
» If a walkthrough is going to be performed, developers

frequently write easy to read program text
» This clarity can help make future maintenance easier

TB-31

OO Testing

• Using OO technology can have effects on three kinds of
testing
» Intra feature
» Inter feature testing
» Testing class hierarchies

• Intra feature testing
» Features can be tested much as procedures & functions

are tested in imperative languages

• Inter feature testing
» Test an entire class against and abstract data type

(specification)
» Some inter-feature testing methods specify correct

sequences of feature calls, and use contracts to derive
test cases

TB-32

Testing Class Hierarchies

• May have re-test inherited features

• For testing a hierarchy it is usually best to test from the top
down
» Start with base classes
» Test each feature in isolation
» Then test feature interactions

• Build test histories
» Associate test cases with features
» History can be inherited with the class, allowing for

reuse of test cases

TB-33

Testing Classes

• Like unit (module) testing
» Usually tested in isolation
» Surround class with stubs and drivers

• Consider the class as the basic unit

• Exercise each feature in turn
» Create test cases for each feature

• Often a test driver is created
» Simple menu that can be used to exercise each feature

with inputs from a test file

• Need to recompile when switching drivers

TB-34

Integration Testing

• Testing with all the components assembled

• Focuses on testing the interfaces between components

• Usually want to do this in a piece by piece fashion
» Avoid a big bang test
» Incremental testing and incremental integration is

preferable
> Integrate after unit testing a component

• Bottom up and top down approaches may be used

