Testing & Debugging

TB-1

Need for Testing

Software systems are inherently complex
» Large systems 1 to 3 errors per 100 lines of code (LOC)

Extensive verification and validiation is required to build
quality software

» Verification
> Does the software meet its specifications

» Validation
> Does the software meet its requirements

Testing is used to determine whether there are faults in a
software system

TB-2

Need for Testing — 2

The process of testing is to find the minimum number of
test cases that can produce the maximum number of
failures to achieve a desired level of confidence

Cost of validation should not be under estimated

The cost of testing is extremely high
» Anything that we can do to reduce it is worthwhile

TB-3

Testing Not Enough

e Exhaustive testing is not usually possible

» Testing can determine the presence of faults, never their
absence
Dikstra

e Test to give us a high level of confidence

TB-4

Test Strategy

|dentify test criteria

» What are the goals for comparing the system against its
specification

> Reliability, completeness, robustness

|dentify target components for testing
» In an OO system the classes and class hierarchies

Generate test cases
» Produce test cases that can identify faults in an
implementation
Execute test cases agains target components

Evaluation

» If expected outputs are not produced, a bug report is

isssued
TB-5

Test Plans

Specify a set of test input

For each input give the expected output

Run the program and document the actual output

Example — square root program

>

>

>

A4

>

>

A4

>

A4

Input: 4.0
Expected Output: 2.0
Actual Output: 1.99999 looks all right

Input: -4
Expected Output: Invalid input

Actual Output: 1.99999 Uh oh! problem here

TB-6

Black Box Testing — Data Coverage

e Testing based on input and output alone
» Do not consider underlying implementation

e Test cases are generated from the specification
» Pre and post conditions

e Specific kinds of black box testing
» Random testing
> Generate random inputs
> Easy to generate cases
> good at detecting failues
> Must be able to easily generate expected output
» Partition testing
> See next slides

TB-7

Partition Testing

e Cannot try all possible inputs

» Partition input into equivalence classes
> Every value in a class should behave similarly

e Test cases
> just before boundary
> just after a boundary
> on a boundary
> one from the middle of an equivalence class

e |oops
» Zero times through the body
» Once through the body
» Many times through the body

TB-8

Partition Testing — 2

e Example 1 — Absolute value — 2 equivalence classes
» Values below zero and values above zero
» b test cases: large negative, -1, 0, +1, large positive

e Example 2 — Tax rates — 3 equivalence classes
> 0..%$29,000 at 17%
> 29,001 .. 35,000 at 26%
> 35,001 ... at 29%

» 13 Test cases
0 1 15,000 28,999 29,000 29,001 29,002

30,000
34,999 35,000 35,001 35,002 50,000

TB-9

Partition Testing — 3

e Example 3 — Insert into a sorted list -- max 20 elements

e About 25 test cases

» Boundary conditions on the list
> empty boundary - length 0, 1, 2
> full boundary - length 19, 20, 21
> middle of range — length 10

» Boundary conditions on inserting
> just before & after first list element
> just before & after last list element
> into the middle of the list

e Suppose an error occurs when adding to the upper end of
a full list

» Devise additional test cases to test hypothesis

TB-10

White Box Testing

Use internal properties of the system as test case
generation criteria

Generate cases based on
» Statement blocks
» Paths

|dentify unintentional infinite loops, illegal paths,
unreachable program text (dead code)

Need test cases for exceptions and interrupts

TB-11

Statement Coverage

Make sure every statement in the program is executed at

least once
A

Example l < l
» ifa<bthenc=a+b;d=a*b /1% 1 2
elsec=a*b ;d=a+b /*2* |
ifc<dthenx=a+c;y=b+d /3% T)\ ¥
else x =a*c ; y = b*d /*4* l N4 l
Statement coverage — can do with 2 tests 3 4
» Execute 1 & 3 with a<b & a+b<a* v l ’
>a=2;b=5
» Execute 2 & 4 with a>=b & a*b >= a+b
>a=5;b=2

Loops — only 1 test required
» Execute body at least once TB-12

Statement Coverage — 2

How do you know you have statement coverage?

Instrument your program with an array of counters
initialized to zero

Increment a unique counter in each block of statements
Run your test

If all counters are non zero then you have achieved
statement coverage

TB-13

Path Coverage

e Every path in the program is executed at least once

O

e Example T F
» ifa<bthenc=a+b;d=a*b /1% l l
elsec=a*b;d=a+b /*2* 1 ?
ifc<dthenx=a+c;y=b+d /3%)\ .
s * " — * * * T

else x =a*c ; y = b*d /*4* l < l

3 4

e Path coverage — 4 tests v y

» Execute 1 & 3 with a<b & atb<a*b l
a=2;b=5

» Execute 2 & 4 with a>=b & a*b>=a+b a=5;b=2
Add for path
» Execute 1 & 4 with a<b &at+b>=a*b a=0;b=1

» Execute 2 & 3 with a>=b & a*b<a+bh a=1;b=0
TB-14

Path Coverage — 2

e | oops — 3 tests required

» Execute body zero times, once in the path, many in the
path

> once is not enough as frequently first time through is
a special case

e Path coverage usually requires exponential increase in
tests as the number of choices and loops increases
» due to multiplication
> two loops in sequence — 9 tests
> three loops In sequence — 27 tests
> ten if....then...else in sequence — 1024 tests

TB-15

Path Coverage — 3

e Convert an integer represented as a decimal string to a
real number.

» ASCII string "123.456" ==> 123.456 in binary

e The EBNF fro the input

» |lnput ::=+[Spaces][+, -][IntegerPart][".' [
DecimalPart]];

» IntegerPart ::= +[DecimalDigit 1;
» DecimalPart ::= +[DecimalDigit];
5 DeCimaI Digit ::= (Iol , |1 |, |2| ,|3| ,|4| ,|5| ,|6| ,|7| ,|8| , |9|);

TB-16

Path Coverage - 4

e The algorithm
» 1 Skip any leading spaces.
» 2 Determines what the sign of the number is.

» 3 Get the integer part of the number; determined by
scanning either the end of the number or a decimal
point.

» 4 Continue building the integer representation of the
input as if there was no decimal point, meanwhile
counting the number of decimal digits.

» 5 Compute the real number from the sign, integer
representation and count of decimal digits.

TB-17

Path Coverage — 5

e 2 tests are sufficent for statement coverage
» positive and negative real numbers.

e 162 tests estimated for all paths.
» 3 cases first loop — step 1 skip lead spaces
» 3 cases first if statement — step 2 determine sign
» 3 cases second loop — step 3 get integer part

» 2 cases second if statement — step 3 check decimal
point
» 3 cases third loop — step 4 get decimal part

> Not all cases are possible -- for example if there is no
'.! (second if statement), then the third loop cannot
not be executed one or many times, only zero times.

TB-18

Path Coverage — 6

How to you know you have path coverage?

As for statement coverage increment counters in each
block of statements

Compare the pattern of non zero counters with the
expected statement blocks in each path

Continue until every path pattern has been matched

TB-19

Top Down Testing

e Test upper levels of program first

e Use stubs for lower levels

» Stubs are dummy procedures that have "empty"
implementations — do nothing

> For functions return a constant value

» Test calling sequences for procedures and simple cases
for upper levels.

TB-20

Bottom Up Testing

e Use test drivers
» Have complete implementation of subprograms

» Create a special main program to call the subprograms
with a sequence of test cases

» Can be interactive, semi-interactive, or non-interactive
> See minimal output test program slides

TB-21

Mixed Top & Bottom Testing

e Use scaffolding
» Have some stubs
» Have some special test drivers

» Like the scaffolding around a building while it is being
built or repaired

» Not a part of the final product but necessary to complete
the task

TB-22

Regressive Testing

e Rerun all previous tests whenever a change is made
» Changes can impact previously working programs
» So retest everything
» Also must test the changes

TB-23

Minimal Output Testing

Reading and comparing expected with actual output is
tedious and error prone

Task should be automated — especially for regressive
testing

Build the expected output into the test driver and compare
with the actual output

Report only if expected = actual

» Qutput states which test failed, the expected and the
actual outputs

Successful test runs only output the message
» Tests passed

TB-24

Minimal Output Testing — 2

e Example checking a stack implementation

Stack list = new Stack(); verifyEmpty("1", list);
list.add("a"); verifyL1("2", list, "[a]");
list.remove(); verifyEmpty("3", list);
list.add("a");

list.add("b"); verifyL2("4", list, "[b, a]");

if (list.contains("c")) printin("5 shouldn't contain c");
if (list.contains("a")) printin("6 should contain a");
if (list.contains("b")) printin("7 should contain b");

list.add("c"); verifyL3("8", list, "[c, b, a]");
list.remove(); verifyL2("9", list, "[b, a]");
list.remove(); verifyL1("10", list, "[a]");
list.remove(); verifyEmpty("11", list);

e Verify routines do the appropriate test and output
messages

TB-25

Debug Flags

When debugging it is useful to turn on and off various
features in a program

» Especially test output

Create a Debug class that contains Boolean flags that can
be set, reset and toggled

Use the flags in if statements that surround interesting
sections of your program

For different test runs give different settings of true and
false to the flags

TB-26

Debug Flags — 2

e Example

if Debug.flag0 then
Block1

fi

if Debug.flag1 then
Block2

fi

if Debug.flag3 then
Block3
if Debug.flag4 then

Block4

fi

fi

e Depending upon the values of flag0 .. flag3 different
combinations of Block1 .. Block4 are executed

TB-27

Assertions

e Assertions can be put into programs using if...then
statements

» Some languages such as Eiffel have them built in

e The condition compares expected with actual values and
prints a message if the assertion fails

e Combined with a debug flag you can turn assertion
checking on and off depending on what you want to test

if Debug.flag0 & expected # actual then ... fi

TB-28

Inspections & Walkthroughs

Manual or computer aided comparisons of software
development products

» specifications, program text, analysis documents
Documents are paraphrased by the authors

Walkthroughs are done by going through the execution
paths of a program, comparing its outputs with those of
the paraphrased documents

Walkthrough team

>

A4

Usually 4-6 people

» Elicit questions, facilitate discussion
» Interactive process

» Not done to evaluate people

TB-29

Inspections & Walkthroughs — 2

e Psychological side effects

» If a walkthrough is going to be performed, developers
frequently write easy to read program text

» This clarity can help make future maintenance easier

TB-30

OO Testing

e Using OO technology can have effects on three kinds of

testing
» Intra feature

» Inter feature testing

» Testing class hierarchies

e Intra feature testing

» Features can be tested much as procedures & functions

are tested in imperative languages

e Inter feature testing

» Test an entire class against and abstract data type

(specification)

» Some inter-feature testing methods specify correct
sequences of feature calls, and use contracts to derive

test cases

TB-31

Testing Class Hierarchies

 May have re-test inherited features

e For testing a hierarchy it is usually best to test from the top
down

» Start with base classes
» Test each feature in isolation
» Then test feature interactions

e Build test histories
» Associate test cases with features

» History can be inherited with the class, allowing for
reuse of test cases

TB-32

Testing Classes

Like unit (module) testing
» Usually tested in isolation
» Surround class with stubs and drivers

Consider the class as the basic unit

Exercise each feature in turn
» Create test cases for each feature

Often a test driver is created

» Simple menu that can be used to exercise each feature
with inputs from a test file

Need to recompile when switching drivers

TB-33

Integration Testing

Testing with all the components assembled
Focuses on testing the interfaces between components

Usually want to do this in a piece by piece fashion
» Avoid a big bang test

» Incremental testing and incremental integration is
preferable

> Integrate after unit testing a component

Bottom up and top down approaches may be used

TB-34

