
Singleton-1© Gunnar Gotshalks

Singleton Pattern – Creational

• Intent
» Ensure a class has only one instance
» Provide a global point of access

• Motivation
Some classes must only have one instance

file system, window manager

• Applicability
» Must have only one instance of a class
» Must be accessible from a known location

Singleton-2© Gunnar Gotshalks

Singleton 1 – Abstract Architecture

Specific to Eiffel
 – has once function but not static variables

+
SINGLETON *

SINGLETON_ACCESSOR

+
INSTANCE_ACCESSOR

+
SINGLE_INSTANCE_CLASS

CLIENT

Singleton-3© Gunnar Gotshalks

Singleton – Participants

• Singleton
Used to type a class as a singleton

• Single instance class
The class that should have only one instance

• Singleton accessor
Declares access point for a single instance

• Instance accessor
Access point (storage location) for the single
instance

• Client
Uses instance accessor to get the single instance

Singleton-4© Gunnar Gotshalks

Singleton – Scenario

INSTANCE_ACCESSORCLIENT

SINGLE_INSTANCE_CLASS

Scenario: Get instance

1 Create instance_accessor
2 Create the_instance

(only once)
3 Get the_instance

1

2

3

Singleton-5© Gunnar Gotshalks

Singleton 1 Class

class SINGLETON

feature {NONE}

frozen the_singleton : SINGLETON is
-- The unique instance of this class

once
Result := Current

end

invariant
 only_one_instance: Current = the_singleton

end

Enforces single
instance property

Singleton-6© Gunnar Gotshalks

Singleton Accessor Class

deferred class SINGLETON_ACCESSOR

feature {NONE}
singleton : SINGLETON is

-- Access to a unique instance.
-- Must be redefined as once function.

 deferred end
is_real_singleton : BOOLEAN is

do
Result := singleton = singleton

end

invariant
 singleton_is_real_singleton: is_real_singleton
end

Enforces single
instance property

Singleton-7© Gunnar Gotshalks

Instance Accessor Class

class INSTANCE_ACCESSOR

inherit SINGLETON_ACCESSOR
rename singleton as the_instance end

feature
the_instance: SINGLE_INSTANCE_CLASS is

-- Create the only instance in the system
once

create Result.make(…)
end

end

Singleton-8© Gunnar Gotshalks

Singleton 1 Single_Instance Class

class SINGLE_INSTANCE

inherit SINGLETON

…

end

Only need to inherit from SINGLETON class.
No other changes

Singleton-9© Gunnar Gotshalks

Singleton 1 – Consequences

• Sole instance is extensible by sub-classing
Clients use extended instance without modification
dynamically

• Reduce name space
Avoids adding global variables storing single
instance

Singleton-10© Gunnar Gotshalks

Singleton 1 – Problem

As defined only one SINGLETON is permitted in the
system.

The once feature in SINGLETON is common to all
instances

 The solution is to have a once feature for each
 needed singleton

 The invariant remains in the SINGLETON class

Singleton-11© Gunnar Gotshalks

Singleton – Solution 2

• SINGLETON class – as for solution 1
» Make the Singleton class deferred
» Make the_singleton deferred
» Keep the invariant

• SINGLE_INSTANCE class
» Inherit from SINGLETON
» Make the_singleton effective

Singleton-12© Gunnar Gotshalks

Solution 2 – Abstract Architecture

*
SINGLETON_ACCESSOR

+
INSTANCE_ACCESSOR

+
SINGLE_INSTANCE_CLASS

CLIENT

*
SINGLETON

One per single
Instance class

Invariant

Singleton-13© Gunnar Gotshalks

Singleton Class – Solution 2

deferred class SINGLETON

feature {NONE}

the_singleton : SINGLETON is
-- The unique instance of this class
-- Should be redefined as a once function
-- returning Current in concrete subclasses

 deferred end
invariant
 only_one_instance: Current = the_singleton
end

Enforces single
instance property

Singleton-14© Gunnar Gotshalks

Singleton 2 Single_Instance Class

class SINGLE_INSTANCE

inherit SINGLETON

feature {NONE}
frozen the_singleton : SINGLETON is
 -- The unique instance of this class
once

Result := Current
end

…

end

Add to the single instance class
• Inherit from SINGLETON class.
• Make the_singleton effective

Singleton-15© Gunnar Gotshalks

Solution 1 & 2 Tradeoffs

• Solution 1
» Only need to inherit from SINGLETON
» Compiler catches invalid create attempts

• Solution 2
» In addition to inheriting from SINGLETON, need to

add the feature the_singleton
» Invalid create attempts can only be caught at run

time

Singleton-16© Gunnar Gotshalks

Singleton – Related Patterns

• Abstract Factory, Builder and Prototype can use
Singleton

Singleton-17© Gunnar Gotshalks

Memory Map

