
Prototype-1© Gunnar Gotshalks

Prototype Pattern – Creational

• Intent
Specify the kinds of objects to create using a
prototypical instance and create new objects by
copying the prototype

Prototype-2© Gunnar Gotshalks

Prototype – Motivation

• Build an editor for musical scores by customizing a
general framework for graphical editors

• Add new objects for notes, rests, staves

• Have a palette of tools
Click on eight'th note tool and add it to the
document

• Assume Framework provides
» Abstract_Graphic class
» Abstract_Tool class for defining tools
» Graphic_Tool subclass – create instances of

graphical objects and add them to the document

Prototype-3© Gunnar Gotshalks

Prototype – Motivation – 2

• Graphic_Tool doesn't know how to create instances
of music classes

Could subclass Graphic_Tool for each kind of
music object

But have lots of classes with insignificant
variations

• Object composition is a flexible alternative to
subclassing
» How can we use it in this application?
» Solution is to copy or clone an instance called a

prototype

• Graphic_Tool is parameterized by the prototype to
clone

Prototype-4© Gunnar Gotshalks

Prototype – Example Architecture

GRAPHIC *
draw *
clone *

ROTATE_ +
TOOL

manipulate +

TOOL *
manipulate *

HALF +WHOLE +

STAFF +

NOTE *

GRAPHIC_ +
TOOL

manipulate +

draw +
clone +

draw +
clone +

draw +
clone +

Prototype-5© Gunnar Gotshalks

Prototype – Abstract Structure

PROTOTYPE *

clone *

CONCRETE_1 +

 CLIENT

operation

clone +

CONCRETE_2 +

clone +

Prototype-6© Gunnar Gotshalks

Prototype – Participants

• Prototype
Declares an interface for cloning itself

• Concrete prototype
Implements operation for cloning itself

• Client
Creates new object by asking prototype to clone
itself

Prototype-7© Gunnar Gotshalks

Prototype – Applicability

• Use when a system should be independent of how its
products are

created, composed and represented
and

> When classes to instantiate are specified at run
time

dynamic loading

> To avoid building a class hierarchy of factories
that parallels the class hierarchy of products

> When instances of a class can have one of a few
different combinations of state
– More convenient to install corresponding number of

prototypes and clone them – undo command case study

Prototype-8© Gunnar Gotshalks

Prototype – Scenario

Scenario: Build a product

1..J create parts_i.make
J+1 create proto_factory.make(…parts…)
J+2 create client.make(proto_factory)
J+3 proto_factory.make_part_1 (…)
 …
J+N+2 proto_factory.. make _part_2 (…)

CLIENT

J+3 .. J+N+2
USER

1..J

CONCRETE_PARTS

PROTOTYPE_FACTORY

J+1

J+2

Prototype-9© Gunnar Gotshalks

Prototype – Consequences

• Many of the same consequences as Builder and
Abstract Factory

• Hides concrete product classes from the client
» Reduces number of names client needs to know
» Work with application specific classes without

modification

• Additional benefits
Adding & removing products at run time

Register a prototype instance with client

Prototype-10© Gunnar Gotshalks

Prototype – Consequences – 2

» Specify new objects by varying values
> Define new behaviour through object

composition
> Specify objects variables with new values not

new classes
> Effectively define new kinds of objects
> Client exhibits new behaviour by delegating

responsibility to the prototype
» Specify new objects by varying structure

> Build objects as parts and subparts
> User defines new groupings that can be reused

Prototype-11© Gunnar Gotshalks

Prototype – Consequences – 3

» Reduced subclassing
> Factory Method produces hierarchy of creator

classes that parallels product classes
> Cloning avoids parallel hierarchy

Biggest benefit is in languages like C++ that do
not treat classes as first class citizens (not real
objects themselves). Less benefit in Smalltalk and
Objective C as classes are their own prototype

» Configuring an application with classes
dynamically

C++ lets you load classes dynamically

Prototype-12© Gunnar Gotshalks

Prototype – Consequences – 4

• Liability
Each subclass of Prototype implements clone
which can be difficult with circular references

Prototype-13© Gunnar Gotshalks

Prototype – Implementation

class MAZE_PROTOTYPE_FACTORY create make
feature
 prototype_maze : MAZE
 prototype_room : ROOM
 prototype_door : DOOR
 prototype_wall : WALL

// Note parameterization with prototypes
 make (m : MAZE ; r : ROOM ; d : DOOR ; w : WALL) is
 do
 prototype_maze := m ; prototype_door := d
 prototype_room:= r ; prototype_wall := w
 end
 -- next slide for the make components methods
end

Prototype-14© Gunnar Gotshalks

Prototype – Implementation – 2

make_wall : WALL is
do Result := prototype_wall.twin
end
make_door (r1 : ROOM ; r2 : ROOM): DOOR is
do Result := prototype_door.twin
 Result.set_rooms (r1, r2)
end
make_room (id : INTEGER) : ROOM is
do Result := prototype_room.twin
 Result.set_id (id)
end
make_maze : MAZE is
do Result := prototype_maze.twin
end

Prototype-15© Gunnar Gotshalks

Prototype – Implementation – 3

// Client uses the prototype -- assuming subclasses are
// implemented

game : MAZE_GAME
proto_factory : MAZE_PROTOTYPE_FACTORY
m : MAZE ; d : DOOR ; w : WALL ; r : ROOM
create m.make ; create d.make
create w.make ; create r.make
create proto _factory.make (m, r, d, w)
// create_maze expects a prototype instead of
// abstract factory
create game . create_maze (proto _factory)

Prototype-16© Gunnar Gotshalks

Prototype – Implementation – 4

// To get a different types of mazes create with different
// prototypes

m : ENCHANTED_MAZE
d : DOOR_NEEDING_SPELL
w : WALL
r : ROOM

create m.make ; create d.make
create w.make ; create r.make

create prot_factory.make (m, r, d, w)
create game . create_maze (proto _factory)

Prototype-17© Gunnar Gotshalks

Prototype – Related Patterns

• Abstract Factory and Protoype can be used together
Abstract Factory can store set of prototypes which
are cloned to return product objects

• When Composite and Decorator are used together,
then Prototype can also be used

