
Observer-1© Gunnar Gotshalks

Observer Pattern – Behavioural

• Intent
» Define one-to-many dependency

> When one subject changes state, all observers
(dependents) are notified and correspondingly
updated

• Also known as
» Dependents and Publish-Subscribe

Observer-2© Gunnar Gotshalks

Observer –!Motivation

A is 30%
B is 50%
C is 20%

text view

Observers

Notify change Request modification

rectangle viewbar viewtarget view

Observer-3© Gunnar Gotshalks

Observer Architecture – Example

OBSERVER *
update *

SUBJECT

attach(observor)
detach(observer)
notify

TEXT_VIEW

get_state
set_state

BAR_VIEW +

update +

observers : set[…]

update *

subject
TARGET_VIEW +

update +

RECTANGLE_VIEW +

update +

subject

subject

Observer-4© Gunnar Gotshalks

Observer – Abstract Architecture

OBSERVER *
update *

SUBJECT

attach(observor)
detach(observer)
notify

CONCRETE_SUBJECT

get_state
set_state

CONCRETE_OBSERVER +

update +

observers : set[…]

update *

subject

" o:observers • o.update

subject.get_state
Current.notify

Observer-5© Gunnar Gotshalks

Observer – Applicability

• When an abstraction has two aspects, one
dependent upon the other
» Encapsulating each aspect as a separate object

means you can change and use them
independently

• When changing one object requires changing an
indeterminate number of corresponding objects

• When an object needs to notify other objects without
making detailed assumptions about those objects, to
reduce coupling

Observer-6© Gunnar Gotshalks

Observer – Participants

• Subject
» Knows its observers
» Provides interface for attaching, detaching and

notifying its observers

• Observer
» Defines an updating interface for observers

Observer-7© Gunnar Gotshalks

Observer – Participants –!2

• Concrete subject
» Stores state of interest to concrete observers
» Notifies observers when state changes

• Concrete observer
» Maintains a reference to its concrete subject
» Stores state that corresponds to the state of the

subject
» Implements Observer updating interface

Observer-8© Gunnar Gotshalks

Observer –!Scenario

• Concrete subject updates all observers, when state is
changed by a client

1 set_state
2 notify
3 update
4 get_state

Scenario: Update observers

CLIENT

CONCRETE_SUBJECT

1

3

CONCRETE_OBSERVER

4

2

Observer-9© Gunnar Gotshalks

Observer –!Consequences – 1

• Abstract coupling between subject and observer
» Permits changing number of observers

dynamically
» Subject and observer can belong to different layers

> If they are in one class, then the object spans
system layers, which can compromise
abstraction by layering

• Supports broadcast communication

• Can have observers depend upon more than one
subject

Observer-10© Gunnar Gotshalks

Observer –!Consequences – 2

• Observers may also change the state
» Can be expensive as observers are unaware of

each other

• Need additional protocol to indicate what changed
» Can have spurious updates

> Not all observers participate in all changes
» Can have clients notify, instead of subject, as

clients understand better when updates are needed
> Leads to errors as clients can forget to update

Observer-11© Gunnar Gotshalks

Observer –!Consequences – 3

• Dangling references when subject is deleted
» Notify observers when subject is deleted

> Cannot delete observers as other subjects may
depend upon them

• Update only when subject state is consistent with
respect to observer
» Could be violated when subclasses invoke

inherited operations

Observer-12© Gunnar Gotshalks

Observer – Related Patterns

• Mediator pattern is used for change managers
» Change manage mediates between subjects and

observers

• Singleton pattern is can be used to make a change
manger unique and globally accessible

