
25-1© Gunnar Gotshalks

Case Study
Command Do–Undo

Interaction

25-2© Gunnar Gotshalks

The Domain

• Interactive systems usually have an undo operation
to be able to back up one or more steps

• To preserve symmetry need to have a corresponding
redo operation

• One keystroke gives undo another gives redo

• Not all actions are undo-able
» print, save, fire missile

25-3© Gunnar Gotshalks

The Requirements

• Should be applicable to a wide class of interactive
applications

• Should not require redesign for each new command
that can be undone
» Implies that undo and redo are different in nature

than the other commands

• Make reasonable use of storage
» Cannot save entire state
» Incremental saves

• Applicable for one-level undo or multi-level undo

25-4© Gunnar Gotshalks

Finding the Abstractions

• Undo and redo are properties of particular commands

• Redo is actually execution of the command in the
current context
» Do not need a separate command

deferred class COMMAND feature
 execute is deferred end
 undo is deferred end
end

25-5© Gunnar Gotshalks

Partial Inheritance Hierarchy

• Each class provides attributes sufficient to support
local variants of execute and undo

• Undo/redo spread through the system
» Operations distributed over data

*COMMAND

LINE_INSERT
LINE_DELETE

STRING_REPLACE

25-6© Gunnar Gotshalks

Class LINE_DELETE

class LINE_DELETE inherit COMMAND
feature
 deleted_line_index : INTEGER
 deleted_line : STRING
 set_deleted_line_index (n : INTEGER) is
 do deleted_line_index := n end
 execute is
 -- delete line
 end
 undo is
 -- restore the last line
 end
end

45

"text line"

deleted_line_index

deleted_line

25-7© Gunnar Gotshalks

INTERPRETER Class – Run feature

• The root for execution

class INTERPRETER create run feature
 ...
 run is do
 from
 start
 until
 quit_confirmed
 loop
 interactive_step
 end
 end
 ...
end

25-8© Gunnar Gotshalks

Interactive Step – 1 level Undo – template

interactive_step is do
 -- get latest user request and decode it
 if normal_command then
 -- execute the command
 elseif request is undo then -- toggle undo/redo
 if there is a command to undo then
 -- undo last command
 elseif there is a command to redo then
 -- redo the command
 end
 else report erroneous request
 end
end

25-9© Gunnar Gotshalks

Interactive Step – One Level Undo

requested : COMMAND -- remember only 1cmd

 interactive_step is
local cmd_type : INTEGER
do
 cmd_type := get_and_decode_user_request

-- create object and attach it to requested
 create_command (cmd_type) -- sets requested

 -- Do the command

end

25-10© Gunnar Gotshalks

Interactive Step – Do the Command

 if normal_command then
 requested.execute ; undoing := False
 elseif request is undo and requested /= void then
 if undoing then -- 2'nd undo in a row is a redo !
 requested.execute ; undoing := False
 else requested.undo ; undoing := True
 end
 else report erroneous request
 end

25-11© Gunnar Gotshalks

Technicalities

• Do not store the full state, just the difference

• Key to solution
» dynamic binding & polymorphism

> requested.execute & requested.undo

• Nothing application specific
» Add specific subclasses of COMMAND

25-12© Gunnar Gotshalks

Creating a COMMAND Object

• Do after decoding a request

• All commands created are descendants of
COMMAND

• What about commands with no undo?

create_command (cmd_type : INTEGER) is do
 if cmd_type is Line_Insert then
 create {LINE_INSERT} requested.make(...)
 elseif cmd_type is Line_Delete then
 create {LINE_DELETE} requested.make(...)
 elseif
end

25-13© Gunnar Gotshalks

Multi-Level Undo

• Need to maintain a history of previous commands
» Actually keep only the commands in the path from

start to last command
> or as far back as we are able to remember

• Also have a cursor to move back and forth through
that single path

25-14© Gunnar Gotshalks

History List

• Features in magenta

history : LIST [COMMAND]

is_first
oldest remembered cmd

is_last
newest remembered cmd

item

Cursor

execute, redoundo

forthbackbefore

25-15© Gunnar Gotshalks

Undo

history : LIST [COMMAND]

if not history.empty and not history.before then
 history.item.undo
 history.back
else
 message ("Nothing to undo")
end

25-16© Gunnar Gotshalks

Redo

history : LIST [COMMAND]

if not history.is_last then
 history.forth
 history.item.redo -- redo a synonym for execute
else
 message ("Nothing to redo")
end

25-17© Gunnar Gotshalks

Execute Normal Command

history : LIST [COMMAND]

if not history.is_last then
 history.remove_all_right
end
 history.put (requested)
 requested.execute

25-18© Gunnar Gotshalks

Issue: Command Arguments

• Some commands will need arguments
> LINE_INSERT need lines of text

• Solution
> Add to COMAND an attribute and a procedure to

set the argument

• Alternate is to pass the argument through execute

argument : ANY
set_argument (a : like argument) is
do argument := a end

execute (argument : ANY) is ...

Many
arguments?

25-19© Gunnar Gotshalks

Issue: create_command Structure

• We can do better than the if ... then ... elseif ...
structure of create_command

• Pre-compute an instance of every command
» polymorphic instance set

commands : ARRAY [COMMAND]

create commands.make (1, command_count)
create {LINE_INSERT} requested .make
 commands.put (requested , 1)
create {LINE_DELETE} requested .make
 commands.put (requested , 2)
...

25-20© Gunnar Gotshalks

Issue: create_command Structure – 2

• Replace the feature create_command with ...

• If the argument is passed through execute, then only
one instance of each command is needed. Do not
need to clone.

requested := (commands @ cmd_type) . twin

requested := commands @ cmd_type

25-21© Gunnar Gotshalks

History List Implementation

• Circular Array if bounded capacity is suitable

0
1

2

n-1
n-2

n-3

...

is_lastis_first

item
Cursor

25-22© Gunnar Gotshalks

User Interface

• Correspondence with implementation
» Could have derived either from the other

change relation label
move figure
new figure

move figure
move label
move label
move label
new cluster
move cluster tag
destroy cluster

redo undo

25-23© Gunnar Gotshalks

Points to Ponder – 1

• Design may involve many relatively small classes
» one for each type of command

• Simple inheritance structure, so efficiency is not a
concern

• Efficiency concerns often arise when you introduce
classes to represent actions
» Does this abstraction deserve to be a class?

> Individual sort algorithms
> Can pass the algorithm to use in other routines
> Example FlexOr sort

25-24© Gunnar Gotshalks

InsertSort as Object – Java

public class InsertSort implements ArraySort {

 public void sort (final Object[] array,
 final BinaryPredicate bp) {

 execute (array , bp);
 }

 public static void execute ... // see next slide
 // can also use without an instance in Java
 // InsertSort.execute (....)
}

// Notice that BinaryPredicate is also an executable
// object

25-25© Gunnar Gotshalks

InsertSort – 2

public static void execute (final Object [] array,
 final BinaryPredicate bp) {
 Object tmp;
 for (int i = 1 ; i < array.length ; i++) {
 for (int j = i
 ; j > 0 && bp.execute (array [j] , array [j – 1])
 ; j--) {
 tmp = array [j];
 array[j] = array [j – 1];
 array [j – 1] = tmp;
 }
 }
 }
// BinaryPredicate is an executable object defined in a
// similar way to InsertSort

25-26© Gunnar Gotshalks

Points to Ponder – 2

• Alternate is to pass functions as arguments

• Example function passing
» Numerical integration that needs the function f to

use for integration
> C approach pass f to the integration routine
> OO approach f as an object

– Use data abstraction to make it a class
– With the desired function as a feature
– Pass the object to the integration method

25-27© Gunnar Gotshalks

Points to Ponder – 3

• Not all function passing is poor practice
> Different paradigm

» Agents in Eiffel
» Functional programming

> Pass functions a input
> Return functions as output

– Functions compute functions to use later !

