
24-1© Gunnar Gotshalks

Case Study
Multi-Panel Interactive System

24-2© Gunnar Gotshalks

The Problem Domain

• Build a general type of interactive system
» Users interact with a set of panels

> Web applications are an example

• Each session goes through a number of states
> Finite state machine
> Automatic Teller Machine

» A state corresponds to a fill-in-the-blanks panel
> User is adding to a database of information

» Depending upon user choices transitions occur to
other states

24-3© Gunnar Gotshalks

Example Panel

– Enquiry on Flights –

Flight from Somewhere Flight to Anywhere

Departure on or after not soon enough

on or before

Preferred airline(s):
Special requirements:

Available flights: 1
Flt# AA 42 Dep 8:25 Arr 7:45 Thru: Chicago

Choose next_action
0 Exit 1 Help 2 Further enquiry 3 Reserve seat

too late

24-4© Gunnar Gotshalks

A State Transition Diagram

Help

Help Help

HelpHelp

1 Initial

5 Confirmation

4 Reservation

2 Enquiry_
on_flights

3 Enquiry_
on_seats

1

2
3 3

2

2

3

11

1

1
1

11

23

11

32

Numbers are
choices in panel

24-5© Gunnar Gotshalks

The Problem

• Create a design and implementation for such
applications

• General & flexible solution

• Things to think about
» Finite state machine may be very large

> Applications can have hundreds of states and
thousands of transitions

» Structure of the system is subject to change
> Cannot foresee all possible states & transitions

» No specific application is mentioned
> What if you need many variations

24-6© Gunnar Gotshalks

The Problem –!2

• A general design – a set of reusable modules –
would be a huge benefit

• Getting the problem to work is only a part of the
solution and insufficient for the task

• Customer's requirements go far beyond
» mere correctness
» mere functionality

24-7© Gunnar Gotshalks

First Attempt

• Block/Module oriented –!procedural

• System made of a number of blocks
» One for each state in the FSM

24-8© Gunnar Gotshalks

First Attempt – 2

Enquiry_Block
 "Display Enquiry on Flight panel"
 repeat
 get user's answer and choice C for next step
 if error in answer then output error fi
 until not error in answer

 "Process answer"
 case C in
 C0 : goto Exit_Block
 C1 : goto Help_Block
 C2 : goto Reservation_Block
 ...
 esac

Similarly for all other states
Easy to devise, does the job
Terrible for meeting requirements

Similarly for all other states
Easy to devise, does the job
Terrible for meeting requirements

24-9© Gunnar Gotshalks

What are the Problems Block Design?

• Use goto's (Dijkstra)
» Usually symptomatic of deeper problem

• Branch structure (goto's) are an exact
implementation of the graph
» Vulnerable to change

> Add a new state
– add new block, change all other blocks

> Add a new transition
– Change all blocks that should use it

24-10© Gunnar Gotshalks

What are the Problems – 2

• Forget reusability across applications
» Specific to one application

• Want not just a solution but a quality solution
» Have to work harder

• What does quality mean for this system?

24-11© Gunnar Gotshalks

Top Down – Functional Solution

• Problems seem to be due to the traversal (goto)
structure

• Generalizing the transition diagram will gain
generality

• Model the function transition as a transition table
representation of a FSM
» Designate one state as initial
» One or more states as final

24-12© Gunnar Gotshalks

Transition Table

0 1 2 3

1 Initial

2 Flights

3 Seats
4 Reserv.

5 Confirm

-1 0 5 2

 0 1 3

 0 2 4
 0 3 5

 0 4 1

Choice

S
t
a
t
e

0 Help
-1 Final

back

24-13© Gunnar Gotshalks

Top Down Decomposition

execute_session

initial transition execute_state is_final

display

is_final

read correct message process

24-14© Gunnar Gotshalks

Implement execute_session

execute_session is
 -- Execute a complete session
 local state, next : INTEGER
 do
 state := initial -- start in initial state
 repeat
 -- next is var parameter
 execute_state (state, next)
 state := transition (state, next)
 until is_final (state) end
 end

24-15© Gunnar Gotshalks

Implement execute_state

execute_state (in s : INTEGER , out c : INTEGER) is
 -- c contains the user's choice for next state
 local a : ANSWER ; ok :BOOLEAN
 do
 repeat
 display (s) -- display panel for state s
 read (s , a) -- get user answer in a
 ok := correct (s , a)
 until ok end
 process (s , a)
 c := next_choice (a) -- get user choice for panel
 end

State s is argument for all functions!
What will be the structure/design of display?

24-16© Gunnar Gotshalks

What are the Problems Top Down?

• Tight coupling
» State is argument to every routine

• Means long and complicate control structure
» Case statements everywhere on state

• Violates single choice principle
» Too many locations need to know about all states

> difficult to modify as states added or removed

• Not reusable/general –!except as a template
» implicit argument in all functions is the application
» Generality Æ know about all states in all

applications

24-17© Gunnar Gotshalks

An OO Solution

• Instead of building components around operations
while distributing data
» OO does reverse

> build around data and distribute operations

• Use most important data types as basis for modules
» Routines are attached to data to which it relates

most closely

• In our example state should be a class

Routines exchange too much data ?
Æ put routines in your data

24-18© Gunnar Gotshalks

State as Class

• What would be handed over to state?
» All operations that characterize a state

> Displaying screen
> Analyzing answer
> Checking answer
> Producing error messages
> Processing correct answer

» Customize for each state

24-19© Gunnar Gotshalks

Class State

• Deferred class

• Deferred features

• Execute is effective because we
know its behaviour

*STATE

input : ANSWER
choice : INTEGER
execute
correct : BOOLEAN
display*
read*
message*
process*

execute is
local ok : BOOLEAN
do
 from ok := false until ok loop
 display ; read ; ok := correct
 if not ok then message end
 end
ensure ok
end

24-20© Gunnar Gotshalks

Inheritance & Implementation

• STATE describes the general notion of state
» execute is the same for all states
» other routines must be customized

• Use deferred classes to specify general situation and
provide for extension

• Use inheritance to specify particular states
» Implement deferred routines

*STATE

INITIAL
RESERVATION

CONFIRMATION

24-21© Gunnar Gotshalks

Architecture of System

• Separates elements common to all states and
elements specific to individual states

• Common elements do not need to be redeclared in
descendants

• Satisfies open-closed principle
» STATE is closed
» Inheritance opens it

• State is typical of behaviour classes
» deferred classes capture common behaviour

• Inheritance & Deferral are key for reusable
components

24-22© Gunnar Gotshalks

Completing the System Design

• How do we represent transitions and an actual
application?

• Have to take care of managing a session
» What execute_session did in top down

• What is missing?
» The notion of the specific application

24-23© Gunnar Gotshalks

Application Class

• Features
» execute

> how to execute the application
» initial & is_final

> special states – properties of application
» transition

> mapping from state to state

• May want to add more features
» Add new state or transition
» Store in a data base
» ...

24-24© Gunnar Gotshalks

Application Class – 2
class application feature
 initial : INTEGER
 execute is
 local st : STATE ; st_number : INTEGER
 do
 from st_number : initial
 until st_number = 0 loop
 st := associated_state.item (st_number)
 st.execute
 st_number := transition.item (st.number, st.choice)
 end
 put_state (st : STATE; sn : INTEGER) is …
 choose_initial (sn : INTEGER) is …
 put_transition (source, target, label : INTEGER) is …
feature { NONE }
 transition : ARRAY2 [STATE]
 associated_state : ARRAY [STATE]
end

notes in
next slide

24-25© Gunnar Gotshalks

Implementing the Design

• Number states from 1..N for the application
» Array associated_state of APPLICATION gives the

STATE associated with a number
» It is polymorphic

• Represent transition as an P (states) x Q(choices) array
transition

• Attribute initial represents the initial state

• Creation procedure of APPLICATION uses creation
procedures of ARRAY and ARRAY2

– see p691 & 692 of Meyer 1997

• Building an application is relatively easy due separation of
parts

24-26© Gunnar Gotshalks

Points to Think About

• Forget about a main program

• Focus on data abstraction
» Leads to structures that can more easily change

and are more easily reused

• Don't ask
» What does the system do?

> It is not a function

• Big win from OO
» clear, general, manageable, change-ready

abstractions

24-27© Gunnar Gotshalks

Points to Think About – 2

• Don't worry too much about modelling the real world
» Goto version is a close model but poor design

• Heuristic to find the classes
» Look for data transmissions and concepts that

appear in communication between numerous
components of a system

What counts in OO design is how good are your
abstractions for structuring your software.

Above all else, worry about finding the
right abstractions

