
22-1© Gunnar Gotshalks

Inheritance
and

Design by Contract

22-2© Gunnar Gotshalks

Parents Invariant Rule

• The invariants of all the parents of a class apply to
the class itself
» The parent’s invariants are AND’ed together, along

with the invariants of this class
» If no invariants are given then TRUE is assumed

• Flat and flat short forms provide a convenient way to
see the whole story
» Flat is used by the supplier
» Flat short is used by the client

> Does not have class history – redefine, rename,
etc.

22-3© Gunnar Gotshalks

Meaning of Design by Contract

C A
r is require α
...
ensure β
end

-- In C
a1 : A
if a1. α then
 a1.r
 check a1. β
 ... assume a1. β is true
end

Verify preconditions
if not clear they are satisfied

Verify postconditions.
Not needed with exception
handling

22-4© Gunnar Gotshalks

Enter Dynamic Binding

C A
r is require α
...
ensure β
end

B
r is require γ
...
ensure δ
end

++
-- In C
a1 : A
a1 := instance of type B
if a1. ?pre? then
 a1.r
 check a1. ?post?
 ... assume a1. ?post? is true
end

What are ?pre?
and ?post?

What restrictions are
on γ and δ ?

22-5© Gunnar Gotshalks

How to cheat

• Two ways
» C expects α is sufficient but B

has stronger preconditions
> don't accept all inputs
> demand more from client
> client is wrong

» C expects β is delivered but B
has weaker postcondition

> deliver outside the range
> effectively deliver less

-- In C
a1 : A
a1 := instance of type B
if a1. ?pre? then
 a1.r
 check a1. ?post?
 ... assume a1. ?post?
end

22-6© Gunnar Gotshalks

Be Honest

• Replace precondition with a weaker precondition
» Expect less from the client than they are prepared

to do
> require clause becomes weaker

• Replace postcondition with a stronger postcondition
» Deliver more to the client than they expect to get

> ensure clause becomes stronger

• Willing to do the job as good as or better

22-7© Gunnar Gotshalks

Design by Contract with Dynamic Binding

• Contracts cannot be broken by redefinition

• Assertions require and ensure are inherited
» Every behaviour of the redefined method satisfies

the original contract
» But can do more

> Accept more input cases
> Deliver more specific outputs

22-8© Gunnar Gotshalks

Subcontracting

• Redefinition is like subcontracting

• To validate a subcontract requires a theorem prover
for the general case

• This is inefficient so we provide an approximation
α → (α or γ)

> Weaker precondition is to accept α or γ
(β and δ) → β

> Stronger postcondition is to accept β and δ

22-9© Gunnar Gotshalks

Subcontracting – 2

• Language support
» When redefining do not use require and ensure
» Use require else γ

γ is or'ed with α – the inherited precondition
» Use ensure then δ

δ is and'ed with β – the inherited postcondition

22-10© Gunnar Gotshalks

Subcontracting example

invert (epsilon : REAL) is -- Invert matrix with precision epsilon
 require else epsilon >= 10^(– 20)
 ...
 ensure then abs ((Current * inverse) – Identity) <= (epsilon / 2)
end

invert (epsilon : REAL) is -- Invert matrix with precision epsilon
 require epsilon >= 10^(– 6)
 ...
 ensure abs ((Current * inverse) – Identity) <= epsilon
end

Original definition

Redefinition

22-11© Gunnar Gotshalks

Assertion Redeclaration Rule

• In the redeclared version of a routine it is not
permitted to use a require or an ensure clause.
Instead you may:
» Use a clause introduced by require else to be or'ed

with the original precondition
» Use a clause introduced by ensure then to be

and'ed with the original postcondition

• In the absence of such a clause the original is
retained

• The lazy evaluation (non-strict) form of or else and
and then are used

22-12© Gunnar Gotshalks

Apparent Precondition Strengthening

• Consider the case of general containers that have no
bounds on capacity

List implementation

• Inherit from List but have a bounded capacity
container

Array implementation

• It looks like original has no restrictions when using
add but refinement has restrictions

> cannot add when full

22-13© Gunnar Gotshalks

Apparent Precondition Strengthening – 2

• Actually have the following in the unbounded
container

require not full
> With full defined as returning false

• In child define
full : BOOLEAN is Result := (count = Capacity) end

• In client have
» if not container.full then container.add(...) end

• No changes and no surprises in the client

• Use abstract preconditions

22-14© Gunnar Gotshalks

Redefining a function into an attribute

• Small problem here
» Precondition becomes the weaker True as the

value can be accessed at any time
» But attributes do not have a postcondition

> The postcondition is added to the class
invariant

> Thereby ensuring the contract still holds

foo : INTEGER is
 require xyz > 0
 ...
 ensure Result = k + 1
end

foo : INTEGER
 ...
 invariant
 foo = k + 1
end

22-15© Gunnar Gotshalks

On Style

» Functions without arguments could be attributes
» Could have postcondition or use class invariants

> class invariants are the preferred style

