
20b-1© Gunnar Gotshalks

Inheritance
&

Adaptation

20b-2© Gunnar Gotshalks

Open-Closed Principle

• Open – Available for extension – add new features

• Closed – Available for client use – stable in spite of
extensions

In real projects
A module needs to be both open and closed!

20b-3© Gunnar Gotshalks

Open-Closed Principle – 2

• Suppose we have a class for which we do not have
the program text
» All we have is the interface

• We want to modify the class
» How? it is closed

• We need to be able to open the class for modification
» to change features
» add new features
» remove features

20b-4© Gunnar Gotshalks

Open-Closed Principle – 3

• Inheritance
» Allows us to re-open a class after it is closed
» It is the mechanism that makes the open-closed

principle possible

• In general, a child class inherits all the features from
a parent class
» though most OO languages allow us to modify the

inherited features

20b-5© Gunnar Gotshalks

Inheritance – Invariance & Creation

• Invariant inheritance rule

• Creation Inheritance rule

An inherited feature's creation status in a parent
class (whether or not the feature is a creation
method) has no bearing on its creation status in
the child class.

The invariant property of a class is the boolean
and of the assertions appearing in its invariant
clause, and of the invariant properties of its
parents if any.

20b-6© Gunnar Gotshalks

Feature Adaptation

• Under inheritance a new class may share behaviour
of a parent class, but may need to modify it

• Want to adapt features from PERSON that may not
be quite appropriate for its subclasses

PERSON

EMPLOYEE STUDENT TUTOR PROF

20b-7© Gunnar Gotshalks

Eiffel Adaptation Mechanisms

• Renaming
» Rename P as Q

> Change the name of a feature from P to Q

• Redefining
» feature behaviour

• Changing
» export permissions

• Effecting
» implementing deferred features

• Undefine
» When a feature is not needed -- makes class deferred

20b-8© Gunnar Gotshalks

Redefinition

• Consider class PERSON with a feature display

• Display mechanisms may not be appropriate for
subclasses – different objects to display depending
upon type

> Want to change semantics not syntax

class EMPLOYEE inherit PERSON
redefine display end
...
display is do
 -- new display body here
end
...
end -- EMPLOYEE

20b-9© Gunnar Gotshalks

Constraints on Redefinition

• You do not have complete freedom with redefinition

• Rules have to be obeyed in order to maintain
substitutability and strong typing

• If you change a type in a redefinition it must be a
subtype of the original
» Within that constraint, can change

> result type
> parameter types

20b-10© Gunnar Gotshalks

Eiffel Redefinition Rules

• Function with no arguments can be redefined to an attribute but
NOT vice-versa
» Assignment possible for attributes, not functions

• Redefined feature must type conform to the original

• Redefined feature must conform with respect to correctness to
the original

> See this when we get to contracts

• Prefix a feature with frozen to prevent redefinition

• To execute the original definition within the redefinition use
Precursor {parent_class} (...)

» Similar to super in Java
» Parent_class is used only for multiple inheritance to

disambiguate which parent

20b-11© Gunnar Gotshalks

Renaming vs Redefinition

PERSON

EMPLOYEE

PERSON

EMPLOYEE

class EMPLOYEE
 inherit PERSON
 rename
 display as p_display

 feature { ANY }
 display is do ... end

end -- EMPLOYEE

class EMPLOYEE
 inherit PERSON
 redefine
 display end

 feature { ANY }
 display is do ... end

end -- EMPLOYEE

20b-12© Gunnar Gotshalks

Notes – Renaming vs Redefinition

• Renaming
» no formal connection between display features

even though they have the same name
» Can change the contract !

• Redefining
» close connection between display features

• Using redefinition
» Essential for successful use of dynamic binding
» Cannot change the contract !

20b-13© Gunnar Gotshalks

Redefining a Signature

• May change a signature to maintain correctness

• Consider a DEVICE class used to represent
hardware that can be attached to a network.
» For every device there is an alternate – used when

the first is not available

class DEVICE feature
 alternate : DEVICE
 set_alternate (a : DEVICE) is
 do
 alternate := a
 end

end -- DEVICE

20b-14© Gunnar Gotshalks

Redefining a Signature – 2

• A PRINTER is a special kind of DEVICE
> should inherit from DEVICE but alternate can

only be another PRINTER
class PRINTER inherit DEVICE
 redefine alternate, set_alternate end
 feature
 alternate : PRINTER
 set_alternate (a : PRINTER) is
 do
 alternate := a
 end

end -- PRINTER

Types have changed
from DEVICE to
PRINTER

PRINTER is a subtype
of DEVICE

All is well

20b-15© Gunnar Gotshalks

Type Redeclaration Rule

• A redeclaration of a feature may replace the type of
the feature (in an attribute or function) or the type of a
formal argument (if a routine) by any type that
conforms to the original
» See Redefining a Signature slides in the set on

Inheritance and Adaptation

• While the rule guarantees proper typing
inconsistencies can arise if types are not changed
consistently
» Leads to use of Anchored Declarations

> The ability to define types relatively and not
absolutely

20b-16© Gunnar Gotshalks

Anchored Declaration

• Provide a shortcut for certain kinds of signature
redefinitions

• Declarations can be made relative to an anchor type
rather than providing an absolute declaration

class NODE [G] create make

feature { NONE }
 item : G -- what's held in the node
 next : like Current
feature { ANY }
 make (g : G) ...
 change_item (g : G)
 change_next (other : like next)

end -- NODE

Current is the anchor.
next points to a node
of the same type as
Current

other is same type as
Next – recursive to Current

20b-17© Gunnar Gotshalks

Anchored Declaration – Rules

• The base class of like anchor is
» the base class of the type of anchor in the current

class
» If anchor is Current, then the base class is the

enclosing class

• Can have recursive definition
» like anchor can be based on an anchored type
» Do not have cycles in the anchor chain – no knots

• While like anchor conforms to its base class T, T
does not conform to like anchor
» Problems occur if the anchor is redeclared in a

subclass (see warning p603 CD, p604 book)

20b-18© Gunnar Gotshalks

& Information Hiding Inheritance

• Inheritance and Information Hiding are orthogonal
mechanisms
» If B inherits from A

> B is free to export or hide any feature it inherits
in all possible combinations

» Need an export clause to change the export status
from that of the parent

class B inherit
 A
 export { NONE } f end -- f is secret
 export { ANY } g end -- g is public
 export { X, Y } h end -- h is selectively public
... -- to X, Y and their descendants
end

20b-19© Gunnar Gotshalks

Interface & Implementation Use

Client Inheritance

Use through interface

Information hiding

Protection against changes
in original implementation

Use of implementation

No information hiding

No protection against changes
in original implementation

20b-20© Gunnar Gotshalks

Deferred Features and Classes

• Do not need nor always can define everything (fully
implement) within a class

• Consider the FIGURE hierarchy

• Most general notion is FIGURE

• Ideally want to apply rotate and translate to any
figure f letting dynamic binding select the appropriate
method at run time

• Could define a rotate, but useless
» There is nothing to define
» Figure cannot provide even a default

implementation

20b-21© Gunnar Gotshalks

Deferred Features and Classes – 2

• Want to declare the existence of rotate and translate
at the FIGURE level so all subtypes have these
features available

• Let the actual descendants provide the specific
implementation each type needs

• Such features are called deferred and classes
containing at least one deferred feature are called
deferred classes

rotate (centre : POINT ; angle : REAL) is
 deferred
end

20b-22© Gunnar Gotshalks

Effecting as feature

• In a proper descendent of FIGURE you will need to
implement rotate
» Process is called effecting

• Deferred features are not redefined as there is no
definition to modify

> Instead we redeclare them

class POLYGON inherit FIGURE
 feature
 rotate (centre : POINT ; angle : REAL) is
 -- write the rotation algorithm here
 end
...
end -- POLYGON

20b-23© Gunnar Gotshalks

Undefining a feature

• Used when a feature is defined in a parent class but
not needed or wanted in a child class

> Useful in multiple inheritance

• Undefining means
» Feature must not be usable in a child class
» We still want substitutability
» What if we call an undefined feature?

• Undefining is to make an effective feature deferred
class CIRCLE inherit ELLIPSE
 undefine rotate end
...
end -- POLYGON

Cannot instantiate
a circle – has a
deferred method

20b-24© Gunnar Gotshalks

Redeclaration Table

Deferred Effective

Deferred

Effective

Redefine Undefine

Effect Redefine

Redeclaring from
 to

20b-25© Gunnar Gotshalks

Types and Modules – Dual Perspective

Module
view

Type
view

Addition of features
Redefinition
Renaming
Descendant hiding
Multiple inheritance
Repeated inheritance

Polymorphism
Dynamic binding
Deferred features
 & effecting

