
20a-1© Gunnar Gotshalks

Inheritance
Polymorphism & Dynamic Types

20a-2© Gunnar Gotshalks

Inheritance Terminology

• Any class that inherits directly or indirectly from C,
including C itself is descendant of C

• A proper descendant of C is a descendant of C
other than itself

C ...

20a-3© Gunnar Gotshalks

Inheritance Terminology – 2

• An ancestor of C is a class A such that C is
descendant of A

• A proper ancestor of C is an ancestor of C other
than itself.

C ...

20a-4© Gunnar Gotshalks

Subtyping Inheritance

• Subtyping relationship
» Occurs when there is a strong degree of

commonality between two or more classes
> E.g. between PERSON and EMPLOYEE

• An EMPLOYEE is a PERSON
» employees behave like persons but also have their

own specialized behaviour

• When this degree of common behaviour occurs,
EMPLOYEE is said to be a subtype of PERSON

• Subtyping models the is-a relationship between
classes

20a-5© Gunnar Gotshalks

Dynamic Binding

PERSON

EMPLOYEE

p1

e1

create p1 -- 1

create e1 -- 2

PERSON

EMPLOYEE

p1

e1
p1 := e1 -- 3

20a-6© Gunnar Gotshalks

Dynamic Binding – 2

• It is the essence of polymorphism – multiple types
» Ability to invoke methods applicable to the

dynamic type of an object rather than its static type
> During execution we can attach a reference to

objects of different types
> both PERSON and EMPLOYEE have a feature

display (EMPLOYEE inherits from PERSON)

p1 , p2 : PERSON
e : EMPLOYEE
p2 := p1 -- ok type match
p1.display -- PERSON display
p1 := e -- ok, type conforms
p1.display -- EMPLOYEE display

20a-7© Gunnar Gotshalks

Example hierarchy

FIGURE*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON ELLIPSE

CIRCLE

RECTANGLETRIANGLE

SQUARE

extent*
barycenter*
…

display*
rotate*
…

perimeter*

perimeter+perimeter+

perimeter++
diagonal

...
...

perimeter++perimeter++

• Consider the following class hierarchy

V. Tzerpos

20a-8© Gunnar Gotshalks

Figure Polymorphism

• Consider a figure hierarchy similar to that on page
468

• Suppose we had an array of figures and want to
rotate all the figures in an array of figures

> Each figure has its own rotation method

20a-9© Gunnar Gotshalks

Figure Polymorphism – 2

• Want a general and maintainable solution

• Want to be able to add new kinds of figures without
» breaking previous programs
» without modifying the rotate all figures method

• Solution
» dynamic binding

20a-10© Gunnar Gotshalks

Figure Polymorphism – 3

-- In a parent class

f : ARRAY [FIGURE]

rotate_all (d : real) is
 require d > 0
 do
 from i := 1
 until i > f.upper
 loop
 f.item(i).rotate(d) -- dynamic binding
 i := i + 1
 end
 end -- rotate_all

20a-11© Gunnar Gotshalks

Feature Call Rule

• In a feature call x.f where the type of x is based on a
class C, feature f must be defined in one of the
ancestors of C
» Example in rotate_all

> rotate must be a feature in the class Figure
> Each type of figure creates a custom instance of

the feature rotate

20a-12© Gunnar Gotshalks

Type Conformance Definition

» A type U conforms to a type T only if the declared
class of U is a descendant of the declared class T

» For generically derived types, every actual
parameter of U must (recursively) conform to the
corresponding formal parameter in T

> void does not conform to expanded types

20a-13© Gunnar Gotshalks

Type Conformance Rule

An attachment of target x and source y is only valid if
the type of y conforms to the type of x

 Attachment is either
 x := y
or
 y is an actual argument to parameter x

20a-14© Gunnar Gotshalks

Direct Instances & Instances

» A direct instance of a class C is an object produced
according to the exact definition of C , either

 through a creation instruction, create x , where
the target x is of type C

 or
 recursively by cloning a direct instance of C

» An instance of C is a direct instance of a
descendant of C

20a-15© Gunnar Gotshalks

Static & Dynamic Types

• Static-dynamic type consistency
» An entity declared of type T may, at run time only,

become attached to instances of T

• Static type is the type of the variable declared in the
program text

• Dynamic type is the type of the instance attached at
execution time

• The type of void is NONE

20a-16© Gunnar Gotshalks

Assignment Attempt

• Type rules ensure statically verifiable dynamic
behaviour
» No surprises at run time

• But type rules are too restrictive, consider
figlist : LIST [FIGURE]

» What is the max diagonal of rectangles in the list?
figure := rectangle ; figure.diagonal

» Cannot solve as diagonal is not a feature of
FIGURE

> Do not want to have diagonal as a part of
FIGURE as all figures would need to define it

» Another example, remove all circles from the list

Wrong

20a-17© Gunnar Gotshalks

Assignment Attempt – 2

• We need to be able, in some circumstances, to know
the dynamic type of an object

• Assignment attempt makes the assignment if the
dynamic and static types conform, otherwise it
returns void
» subtype_object ?= supertype_object

20a-18© Gunnar Gotshalks

Assignment Attempt Example

maxdiag (figlist : LIST [FIGURE]) : REAL is
 require list_exists: figlist /= Void
 local r : RECTANGLE
 do
 from figlist.start ; Result := 0.0
 until figlist.after
 loop
 r ?= figlist.item
 if r /= Void then
 Result := Result.max(r.diagonal)
 end
 figlist.forth
 end
 end

Attempt assignment

Check if successful

20a-19© Gunnar Gotshalks

Polymorphic Creation

• Assume x is of static type T but we want to assign to
x an instance of static type U where U is a
descendant of T

T

U

...
x

Use

create {U} x.make(…)

Obsolescent use of !!
! U ! x . make (...)

