
16-1© Gunnar Gotshalks

Exceptions

When the Contract is Broken

16-2© Gunnar Gotshalks

Definitions

• A routine call succeeds if it terminates its execution
in a state satisfying its contract

• A routine call fails if it terminates its execution in a
state not satisfying its contract

• An exception is a run-time event that may cause a
routine call to fail
» Every failure is caused by an exception but not

every exception causes a failure

16-3© Gunnar Gotshalks

Exception Causes

• Try a.f(...) and a is void

• Calling a routine that fails

• Finding assertions fail
» preconditions, postconditions, class invariants,

check

• Loops fail
» loop invariant goes false, variant does not

decrease

• A hardware problem (divide by 0), or operating
system error

• Trigger an exception explicitly

16-4© Gunnar Gotshalks

Failures and Exceptions

• A failure of a routine causes an exception in its caller

• Failure cases
» A routine call fails if and only if

> an exception occurs during the execution of the
routine

> the routine does not recover from the exception

16-5© Gunnar Gotshalks

What Not to Do – C example

• C example
» signal (exception_code , exception_handler)

> Notify OS that when exception_code occurs,
pass control to exception_handler

• Expected response is
» exception_code occurs
» exception_handler invoked
» return to point of exception & continue

• No guarantee
» return to point of exception
» problem has been addressed

16-6© Gunnar Gotshalks

What could be done – C example

• What should be done
» correct the situation – perhaps modify initial state

to improve it
> Allow network to choose a route

» rerun the routine

• Can do it in C
» Use setjmp to save a restart location
» Use longjmp to return – even over intervening

subprogram calls
> Pops the runtime stack back to the setjmp

location

16-7© Gunnar Gotshalks

What Not to Do – Ada Example

• On Negative message printed and return to caller

• Caller not notified of the event

• Is this an appropriate response?

sqrt (n : REAL) return REAL is
 begin
 if x < 0.0 then raise Negative
 else normal_computation
 exception when Negative => put ("Negative") return
 when others => ... return
end

16-8© Gunnar Gotshalks

What could be done – Ada Example

• Need to use the raise exception mechanism in the
exception handler

• Ada Exception Rule
» The execution of any Ada exception handler should

end by either executing a raise instruction or
retrying the enclosing program unit

16-9© Gunnar Gotshalks

Exception Handling Principle

• Ignore false alarms
» Exception mechanism used in an event loop

> Resizing of a window -- better ways to handle it.

• Only two responses
» Retrying

> Attempt to change the conditions that led to the
exception and execute the routine again from the
beginning

» Failure – Organized panic
> Clean up the environment (reestablish invariants)
> Terminate the call
> Report failure to the caller

16-10© Gunnar Gotshalks

On Retrying

• Best response is routine succeeds on retry
» Caller is unaffected; is not disturbed

• Sometimes nothing to do but retry as external
conditions may have changed
» Busy signal when attempting to phone someone

• Could change initial conditions – within parameters of
invariants

• Could try different algorithm

16-11© Gunnar Gotshalks

On Failure

• Make sure the caller is notified
» Give up – panic mode

• Restore consistent state
» Be organized
» Change state so invariants are correct

16-12© Gunnar Gotshalks

Rescue & Retry

• The rescue clause is invoked when an exception
occurs

routine is
 require preconditions
 local variables
 do body
 ensure postconditions
 rescue -- no rescue, routine fails
 if then retry
 else -- no retry, routine fails
end

16-13© Gunnar Gotshalks

Exception History

• If no routine in the call chain is able to succeed when
an exception is raised
» System finally gets control
» Prints history of propagating the exception up to

the root
> List

– Object, Class, Routine
– Nature of exception

• – void reference
• assertion failure – use assertion labels
• routine failure

– Effect
• fail or retry

16-14© Gunnar Gotshalks

Example 1 – Keep Retrying

get_integer is
 do
 print ("Enter an integer: ")
 read_one_integer
 rescue
 retry
end

16-15© Gunnar Gotshalks

Example 2 – Maximum retries

try_to_get_integer is // note change from text
 local attempts : INTEGER
 do
 if attempts < Max_attempts then
 print ("Enter an integer")
 read_one_integer ; integer_read := True
 else
 integer_read := False
 end
 rescue
 attempts := attempts + 1 ; retry
 end

16-16© Gunnar Gotshalks

Example 2 – Maximum retries – 2

get_integer is
 do
 try_to_get_integer
 if integer_read then
 n := last_integer
 else
 ... Do next level of interaction ...
 end
end

16-17© Gunnar Gotshalks

Example 3 – Hardware or OS problem

// Precondition fails but only know after computation
quasi_inverse (x : REAL) : REAL is -- 1 / x if possible
 local division_tried : BOOLEAN
 do
 if not division_tried then
 Result := 1 / x
 end
 rescue
 division_tried := True
 retry
end

Result = 0 if x is too small
and causes underflow

16-18© Gunnar Gotshalks

Example 4 – N version Programming

do_task is -- try several algorithms
 local attempts : INTEGER
 do
 if attempts = 0 then do_version_1
 elseif attempts = 1 then do_version_2
 elseif attempts = 2 then do_version_3
 end
 rescue
 attempts := attempts + 1
 if attempts < 3 then reset_state ; retry
 else restore_invariant
 end
end

16-19© Gunnar Gotshalks

Correctness of the Rescue Clause

• Formal rule C2 for class correctness stated
 For every exported routine R and any set of valid

arguments A R
 { pre R (A R) and inv } Body R { post R (A R) and inv}

• Correctness rule for failure inducing rescue clauses
 { True } Rescue R { inv}

• Correctness rule for retry inducing rescue clauses
 { True } Retry R { pre R and inv}

• Precondition for C2 is stronger than C3 & C4, and its
postcondition is also stronger.
» C3 does not have to ensure the contract

C2

C3

C4

16-20© Gunnar Gotshalks

When there is no Rescue Clause

• Every routine has the following by default
 rescue default_rescue

> default_rescue does nothing but can be
overridden

> Creation routines establish the invariant. May
be possible to use creation routines in writing a
default_rescue

16-21© Gunnar Gotshalks

EXCEPTIONS Class

• Can use the EXCEPTIONS class to give exception
objects
» Inherit from EXCEPTIONS and then customize
» Can know the nature of the last exception
» Can raise exceptions

16-22© Gunnar Gotshalks

Exception Simplicity Principle

All processing done in a rescue clause
should remain simple, and focused on the
sole goal of bringing the recipient object
back to a stable state, and, if possible,
permitting a retry.

