
15-1© Gunnar Gotshalks

Design by Contract

Building Reliable Software

15-2© Gunnar Gotshalks

Contracts and Quality Assurance

Slide 228 from Bertrand Meyer

15-3© Gunnar Gotshalks

Software Correctness Property

• Correctness is a relative notion
» A program is correct with respect to its

specification
» To be correct a program must correspond with its

specification
> print("Hello world")

• Is neither correct nor incorrect

• Correspondence is one of the cornerstones of
building reliable software
» Viewing the system – or part of it – from different

perspectives without contradiction

15-4© Gunnar Gotshalks

Correctness Formulae

• A is some operation
» One or more program text statements, including

procedure calls

• Pre & Post are the preconditions and postconditions
for the operation

{ Pre } A { Post }

Any execution of A, starting in a state where
Pre holds, will terminate in a state where
Post holds

15-5© Gunnar Gotshalks

{ P } A { Q }

• Also called Hoare triples
» Mathematical notation
» P & Q are assertions

• Example
 { x ≥ 9 } x : = x + 5 { x ≥ 13 }

> Note assertions only need to be true
> Can assertions be good? the best?
> What do we mean by good with respect to

assertions?

15-6© Gunnar Gotshalks

Weak and Strong Assertions

• Suppose you are given a set of integers
» { 2 4 8 16 32 ... }

• An assertion can be used to describe the integers in
the set
» 1 – a set of some integers

> { p: INTEGER • p }
» 2 – a set of even integers

> { p: INTEGER | p mod 2 = 0 • p }
» 3 – a set of powers of two

> { p: INTEGER • 2 ** p }
» 4 – set of powers of two with positive exponent

> { p: INTEGER | p > 0 • 2 ** p }

Stronger

Weaker

15-7© Gunnar Gotshalks

Weak and Strong Assertions – 2

• The stronger the assertion the closer the description
comes to specifying the actual set

• In general
» Weak assertions describe bigger sets than strong

assertions

• In programming
» The weaker the assertion the more cases that must

be handled
> For precondition – more input states
> For postcondition – more output states

15-8© Gunnar Gotshalks

Job Hunting

• Suppose you are looking for a job where you have to
do A

• If P is weak you have to handle many cases, if P is
strong you have fewer cases to handle

• What do you look for to make your job easier?

• What does the employer look for to get the most work
out of you?

{ P } A { Q }

15-9© Gunnar Gotshalks

Strongest Precondition

• No input condition is acceptable
» You do not have to do any work as the conditions

are never right for you to do anything
» Independent of postcondition – A is never

executed

• The supplier – you – has no responsibility, do no
work – take the job !!!

• The client – employer – has all the responsibility, has
to do all the work as they get no work out of you

{ False } A { ... }

15-10© Gunnar Gotshalks

Weakest Precondition

• Any input condition is acceptable
» As an employee you have to handle all possible

situations to make Q true
> This is the most work on your part – if you are

lazy you, stay away from this job
> The employer loves this, they get the most out

of you

• The supplier – you – does all the work and has all the
responsibility – taking the job depends upon Q

• The client – employer – has no responsibility, does
no work

{ True } A { Q }

15-11© Gunnar Gotshalks

Precondition Conclusions

• The stronger the precondition the better for the
supplier, the worse for the client

• There is a tradeoff

• In practice
» Have the weakest precondition that makes the task

feasible
> Satisfy the most clients
> Supplier is able to satisfy the postcondition with

reasonable effort

15-12© Gunnar Gotshalks

Weakest Postcondition

• All output conditions are acceptable
» You have an easy job, as anything you do is

acceptable as long as you do something
» Independent of precondition – input not linked to

output

• The supplier – you – has minimum responsibility, do
minimum work – next best thing to strongest
precondition

• The client – employer – has all the responsibility, has
to do all the work as they may not get any useful
work out of you

{ ... } A { True }

15-13© Gunnar Gotshalks

Strongest Postcondition

• No output condition is acceptable
» You have to work forever without achieving your

goal, you are doomed to failure

• The supplier – you – does all the work and has all the
responsibility but never achieve anything

• The client – employer – has no responsibility, does
no work but does not get anything done

{ ... } A { False }

Strongest postcondition is actually not good for either
supplier or client

15-14© Gunnar Gotshalks

Postcondition Conclusions

• The stronger the postcondition the better for the
client, the worse for the supplier

• There is a tradeoff

• In practice
» Have the strongest postcondition that makes the

task feasible
> Satisfy the most clients
> Supplier is able to satisfy the postcondition with

reasonable effort

15-15© Gunnar Gotshalks

Benefits & Obligations

Obligations Benefits

Client

Supplier

from preconditions
row & col are in range

from postconditions
get requested element
if it exists

from postconditions
return requested
element, if it exists

from preconditions
knows row and col
are in range

15-16© Gunnar Gotshalks

Get more – check less

• Less programming – Non Redundancy Principle
» Under no circumstances shall the body of a routine

ever test for the routine's precondition
» Redundancy leads

> software bloat
– both size & execution time

> complexity
> more sources of error

• Clearly indicate who has what responsibility
» supplier
» client

15-17© Gunnar Gotshalks

??? Defensive Programming ???

• Opposite of design by contract
» Every routine checks its input irregardless of

preconditions
> Effectively precondition is the weakest – True

• Every one is responsible
==> No one accepts responsibility

» Can always point to someone else

• Need the notion of
» The buck stops here

• Defensive programming is undefendable

15-18© Gunnar Gotshalks

Not Input Checking

• Contracts are about software <-> software
communication
» NOT the following

> software <-> human
> software <-> real world

• Example input routine
» require: numeric key to be pressed

> Wishful thinking – cannot guarantee person will
only press numeric key

> Not a contract
» Can only expect any key may be pressed

15-19© Gunnar Gotshalks

Input Subsystem

Input Subsystem

System

Convert unreliable
real world message
to reliable
system message

M

M

Within system
have design
by contract

15-20© Gunnar Gotshalks

Assertion Violation Rules

• Rule 1
» A run time assertion violation is the manifestation

of a bug in the software

• Rule 2
» A precondition violation is the manifestation of a

bug in the client
» A postcondition violation is the manifestation of a

bug in the supplier

15-21© Gunnar Gotshalks

Definitions

• Error
» A wrong decision made during software development

• Defect – bug sometimes means this
– The term Fault is also used

» Property of software that may cause the system to
deviate from its intended behaviour

• Fault – bug sometimes means this
– The term Failure is also used

» The event in which software deviates from its intended
behaviour

Error ==> Defect ==> Fault
Error ==> Fault ==> Failure

15-22© Gunnar Gotshalks

Imperative vs Applicative

• Not redundant
» Body is imperative – a description of how

> Computing – changes state
» Ensure is applicative – a description of what

> Mathematics – does not change state, either
true or false

full : BOOLEAN is
do
 Result := (count = capacity)
ensure Result = (count = capacity)
end

15-23© Gunnar Gotshalks

Imperative vs Applicative – 2

• Alternate bodies are possible

if count = capacity then Result := True
 else Result := false end

if count = capacity then Result := True end

15-24© Gunnar Gotshalks

Terminology

Implementation

Instruction

How

Imperative

Prescription

Specification

Expression

What

Applicative

Description

Computing Mathematics

15-25© Gunnar Gotshalks

Reasonable Preconditions

• Preconditions appear in the official documentation
given to clients

• Possible to justify the need for the preconditions in
terms of the specification only

• Every feature appearing in preconditions are
available to every client to which the feature is
available
» No surprises

15-26© Gunnar Gotshalks

Correctness of a Class

• A class C is correct with respect to its assertions if
and only if
 For any valid set of arguments A p to a creation

procedure P
 {Def C and pre p (A P) } Body P {post P (A P) and inv}

• Where
 Def C assert attributes of C have default values
 pre P are the preconditions of P
 post P are the postconditions of P
 inv are the class invariants

C1

15-27© Gunnar Gotshalks

Correctness of a Class – 2

 For every exported routine R and any set of valid
arguments A R

 { pre R (A R) and inv } Body R { post R (A R) and inv}C2

15-28© Gunnar Gotshalks

Contract Guidelines – Class Invariant

• Develop first
• Show invariant properties of individual attributes
• Show as many invariant relationships among the

attributes as possible
• Most important to show the important and non-

obvious relationships
» Even if it means some redundancy
» Point is not to give the logical minimum but to

convey information to all clients (both developers
and users)

• As contracts for routines are developed consider
general cases that may be put into class invariants

15-29© Gunnar Gotshalks

Contract Guidelines – Precondition

• Parameter-less functions can be called at any time
» Precondition is always true

> As a consequence, redundant to state

• Parameter-less procedures may have preconditions
on the state or may not
» As a consequence, must always assert a

precondition, even if the assertion is "True"

• Routines with parameters typically have conditions
on the parameters and on the state
» As a consequence, must always assert a

precondition, even if the assertion is "True"

15-30© Gunnar Gotshalks

Contract Guidelines – Precondition – 2

• Give the weakest reasonable precondition
» The routines will be most useful to clients

• All features in the precondition must be exported to
the client
» They must be able to execute the precondition to

be sure that it is true before calling the routine.

• Class invariants are implicitly a part of the
precondition
» But the client is not responsible for satisfying them

> that is a responsibility of the supplier

15-31© Gunnar Gotshalks

Contract Guidelines – Postcondition

• Postconditions involve the all the parameters and
state
» Consider all possible relationships
» Specify everything that changes
» Specify everything that does not change

> Default is if not mentioned, then arbitrary
change or no change is permitted

• For functions
» Must precisely specify the Result

15-32© Gunnar Gotshalks

Contract Guidelines – Postcondition – 2

• Give the strongest reasonable postcondition
» Most informative to clients

• Class invariants are implicitly a part of the
postcondition
» Normally not repeated but in important and non-

obvious cases redundancy may be good to have
> Particularly important if there are many class

invariants and only one or two apply that may
be forgotten.

15-33© Gunnar Gotshalks

Contract Guidelines – Postcondition – 3

• Features in the postcondition do not need to be
exported to the client
» Clients do not execute postconditions
» Some postconditions are implementation

dependent
> Developer want to make sure the

implementation is correct – must be able to
reference non-exported features

» But will involve some exported features as clients
need to understand what the routine does.

15-34© Gunnar Gotshalks

Contract Guidelines

• Contracts are the equivalent of security
» Need to think of how security could be broken and

prevent it

• Cannot specify everything
» Too much to specify

> Need to leave some things to good practice
– E.g. non-change is often left as a comment, as formal

specification can be too cumbersome and non-change is
common practice in the given context

» Concentrate on
> most important assertions
> non-obvious assertions

