
14-1© Gunnar Gotshalks

Modularity

14-2© Gunnar Gotshalks

Modular Software

• Software constructed as assemblies of small pieces
» Each piece encompasses the data and operations

necessary to do one task well

• Modular software ==> maintainable software
» Uses divide and conquer principle

• Meyer:
» To achieve extendibility, reusability, compatibility, need

modular software and methods to produce modular
software

• In OO design
» Module ≡ Class

14-3© Gunnar Gotshalks

Issues in Modular Design

• Information hiding

• Independence
» Each module implements a separable part of the whole
» modules have small, simple interfaces
» high interaction between modules is usually

symptomatic of a bad modular design

• Key ideas: coupling and cohesion
» Cohesion – how "self contained" a module is
» Coupling – how dependent modules are on each other

Want high cohesion and low coupling

14-4© Gunnar Gotshalks

Criteria for Modularity

• Want a modular design method satisfying
» decomposability
» composability
» understandability
» continuity
» protection

• Without these, we cannot produce modular software

14-5© Gunnar Gotshalks

Decomposability

• Decomposition
» Break a problem into sub-problems connected by

simple structures

> minimize communication between sub-problems

> permit further work to proceed separately on each sub-
problem

» Example
> see slides on top down design

14-6© Gunnar Gotshalks

Composability

• Composition

» Produce software from reusable plug and play modules

» Composed software is itself a reusable module

» Reusable modules work in environments different from the
ones in which they were developed

» Examples
> using pipe in the Unix shell to combine Unix commands
> see slides on abstract data types and bottom-up design

14-7© Gunnar Gotshalks

Decomposability and Composability

• Composability and decomposability are independent and
often at odds
» Top down design favours generating modules that fulfil

specific requirements, hence, are unsuitable for
composition

» Bottom up design favours general modules that are too
general, hence when combined generate inefficient
systms – in size and speed

• Both top down – decomposition – and bottom up –
composition are required, however
» Trick is to know when and how to best use both

methods

14-8© Gunnar Gotshalks

Understandability and Continuity

• Understandable
» Minimize need to understand module context

> Know or examine as few other modules as possible
> Very important for maintenance

• Continuity
» The smaller the change in specification, the fewer the

number of modules that must be changed (edited) and if
possible compiled

> Example: use of symbolic constants – need to change
value in one place but requires recompilation of every
module using the constant

• Related to coupling and cohesion

A module should do one thing well

14-9© Gunnar Gotshalks

Modular Protection

• Confine abnormal run time errors to one or a very few
modules

• Avoid propagation of error conditions to neighbouring
modules
» Example

> Validate input before propagating it to other modules

• Exceptions in languages like C++ and Java can be used in
an undisciplined manner leading to violations of protection
» Exceptions raised in one part of the system should not

be handled by a remote part of the system

14-10© Gunnar Gotshalks

Design Rules to Ensure Modularity

• We have seen criteria for modular software development

• From them we can deduce the following rules that can
help establish the properties we want in our designs
» Direct Mapping rule
» Few interfaces rule
» Small interfaces rule
» Explicit interfaces rule
» Information Hiding rule

14-11© Gunnar Gotshalks

Direct Mapping Rule

• Software design involves addressing needs in a problem
domain

• Have to understand the problem AND its domain, then formulate
a solution

• Model our solution in some notation (we will use BON)

• Need a clear mapping from the proposed solution (in BON) to
program source text

• Arises from continuity and decomposability

Correspondence
The structure used in implementing a software system
should remain compatible with the structure used in

modelling the system

14-12© Gunnar Gotshalks

Few Interfaces Rule

• Restrict the number of communication channels between
modules

• Arises from protection, continuity, composability,
decomposability and understandability

Every module should communicate
with as few others as possible

Hub Composite Ring

14-13© Gunnar Gotshalks

Small Interfaces Rule – 1

• Also known as weak coupling

• Relates to the size of connections rather than their
number

If two modules communicate, they should
exchange as little information as possible

14-14© Gunnar Gotshalks

Small Interfaces Rule – 2

• Historical bad idea: Fortran COMMON block
» COMMON block1 A[75], B[25]
» COMMON block1 C[50], D[50]

> View memory in two different ways!

• Local variables via Algol-60 block structure
var i

Access all variables in outer block
 i := i + 5

block1
block2

14-15© Gunnar Gotshalks

Explicit Interfaces Rule

• Conversation is limited to a few participants and only a
few words

• Conversations are loud and public

• Really important with respect to understandability

• Worry about procedure parameters as well as shared data

Whenever two modules A and B communicate, this
must be obvious from the text of A or B or both

14-16© Gunnar Gotshalks

Information Hiding Rule (Parnas 72)

• Only some, but not all of the module's properties are
public; the rest are secret

• Public ≡ interface

The designer of every module must select a subset of
properties as the official information about the module,

to be made available to authors of client modules

Public

Private
&

Secret

14-17© Gunnar Gotshalks

Software Construction Principles - 1

• Linguistic Modular Units Principle
» Modules must correspond to syntactic language units

• Self-Documenting Principle
» Module designers should make all information about the

module part of the module itself

14-18© Gunnar Gotshalks

Software Construction Principles – 2

• Uniform Access Principle
» All module services should be available through a

uniform notation, which does not betray whether they
are implemented through storage or computation

» Allow implementer to make space-time tradeoffs

• Single Choice Principle
» Whenever a system must support a set of alternatives,

one and only one module in the system should know
their exhaustive list

14-19© Gunnar Gotshalks

Software Construction Principles – 3

• Open-Closed Principle
» Open – Available for extension – add new features
» Closed – Available for client use – stable in spite of

extensions

» When are we done?
» We must make modules available to others!

• Classical approach
» Close when stability is reached, reopen when necessary
» But need to reopen all the clients too!
» Inheritance offers a solution to this problem

In real projects
A module needs to be both open and closed!

