
11-1© Gunnar Gotshalks

Stepwise Refinement
Top Down Design

11-2© Gunnar Gotshalks

On Top Down Design

• Useful in creating a function or algorithm when the
input and output data structures correspond
» If the input and output data structures do not

correspond then one needs communicating
processes to correctly design an implementation

• NOT USEFUL for designing programs

Real systems have no top

Program ≠ function

11-3© Gunnar Gotshalks

On Mathematics

I saw a high wall and as I had a premonition of
an enigma, something that might be hidden
behind the wall, I climbed over it with some
difficulty On the other side I landed in a
wilderness and had to cut my way through with a
great effort until – by a circuitous route – I came
to the open gate, the open gate of mathematics.

M.C. Escher

11-4© Gunnar Gotshalks

Escher – Circle Limit 1 (1958)

11-5© Gunnar Gotshalks

Escher – Plane Filling 1 (1951)

11-6© Gunnar Gotshalks

Escher Waterfall 1961

11-7© Gunnar Gotshalks

Stepwise Refinement

• Also known as functional decomposition and top
down design

• Given an operation, there are only the following three
choices for refinement
» Sequence of sub-operations

> OP ≡ OP1 ; OP2 ; ... ; OPn
» Choice of sub-operations

> OP ≡ If COND then OP1 else OP2
» Loop over a sub-operation

> OP ≡ OP1 while COND do OP2

11-8© Gunnar Gotshalks

Stepwise Refinement

• Is an recursive process of applying one of the
previous three choices (with variations) to sub-
operations until program text can be written

11-9© Gunnar Gotshalks

Stepwise Refinement Procedure

Problem
Op

Unrefined
Operations

an OP

Exists?

Can code?

OP ≡ OP1 ; OP2 ; ... ; OPn

OP ≡ if COND then OP1 else OP2

OP ≡ OP1 while COND do OP2

Add to program

Done

OP1, OP2, ... , Opn

COND, OP1, OP2

COND, OP1, OP2

No

Yes

11-10© Gunnar Gotshalks

Sequence Questions

 OP ≡ OP1 ; OP2 ; ... ; Opn
 Does the sequence of operations OP1 followed by OP2 followed

by ... followed by OPn accomplish the upper level operation OP

 precondition OP ⇒ precondition OP1
 postcondition OP1 ⇒ precondition OP2
 postcondition OP2 ⇒ precondition OP3
 ...
 postcondition OPn-1 ⇒ precondition OPn
 postcondition OPn ⇒ postcondition OP

11-11© Gunnar Gotshalks

Choice Questions

 OP ≡ if COND then OP1 else OP2
• Does the operation OP1 accomplish the operation OP when the

condition COND is true
 COND ⇒

precondition OP ⇒ precondition OP1
 and postcondition OP1 ⇒ postcondition OP

• Does the operation OP2 accomplish the operation OP when the
condition COND is false
 not COND ⇒

precondition OP ⇒ precondition OP2
 and postcondition OP2 ⇒ postcondition OP

11-12© Gunnar Gotshalks

Loop Questions – 1 of 4

 OP ≡ –0–
 OP1
 –1–
 while COND { OP2 –2– }
 –3–

 Let LI be a loop invariant, which must always be true
after OP1 is executed – except temporarily within
OP2

Ask verification question - i -

11-13© Gunnar Gotshalks

Loop Questions – 2 of 4

 Question 0 – What is the LI?
» In general it is an extremely difficult question to

answer. It contains the essential difficulty in
programming

» Fundamentally it is the following

LI ≡ totalWork = workToDo + workDone

11-14© Gunnar Gotshalks

Loop Questions – 3 of 4

 OP ≡ –0–
 OP1
 –1–
 while COND { OP2 –2– }
 –3–

 Question 1 – Is LI true after OP1?
 precondition(OP) + execution(OP1) ⇒ LI

 Question 2 – Is LI true after OP2?
 (LI ∧ COND) + execution(OP2) ⇒ LI

11-15© Gunnar Gotshalks

Loop Questions – 4 of 4

 OP ≡ –0–
 OP1
 –1–
 while COND { OP2 –2– }
 –3–

 Question 3a – Does the loop terminate?
 Does COND eventually become false?

 Question 3b – Is postcondition of OP true at loop
end?
 (LI ∧ (not COND)) ⇒ postcondition OP

11-16© Gunnar Gotshalks

Example Loop Design

• Consider a program loop which calculates the
division of positive integers.
» D is the divisor and D > 0 Q

Q is the quotient D DV
R is the remainder ...
DV is the dividend and DV > 0 R

• We are to compute Q and R from D and DV such that
the following is true.
 0 ≤ R < D ∧ DV = D*Q + R

11-17© Gunnar Gotshalks

Loop Design – 1

• Question 0 – Find the loop invariant
» After consulting an oracle we have determined that

the following is an appropriate loop invariant
> this is the creative part of programming

 LI ≡ DV = D*Q + R ∧ R ≥ 0

11-18© Gunnar Gotshalks

Loop Design – 2

 OP ≡ –0– LI ≡ DV = D*Q + R ∧ R ≥ 0
 OP1
 –1–
 while COND { OP2 –2– }
 –3–

• What we have to do is to determine COND, OP1, and
OP2 while checking that the verification questions are
satisfied.
» In practice we iterate between loop invariant and

the program until we have a match that solves the
problem.

11-19© Gunnar Gotshalks

Loop Design – 3

 LI ≡ DV = D*Q + R ∧ R ≥ 0

• Question 1 – Make LI true at the start
 OP1 ≡ Q ← 0 ; R ← DV

> LI is true
» DV = D*0 + DV
» DV > 0 from the precondition ⇒ R ≥ 0

11-20© Gunnar Gotshalks

Loop Design – 4

 LI ≡ DV = D*Q + R ∧ R ≥ 0

 while COND { OP2 –2– }

• Question 2 – Is LI still true after OP2 is executed?
 COND ≡ R ≥ D True before OP2 exec
 OP2 ≡ Q ← Q + 1 ; R ← R – D

 Therefore Q’ = Q + 1 ∧ R’ = R – D
» After OP2 show LI first part is true

> DV = D*Q’ + R’ LI first part
 = D*(Q + 1) + (R - D) Substitute equality
 = D*Q + D + R - D Rearrange
 = D*Q + R True before OP2, So still true

» See effect of moving data from workToDo (D & DV) to
workDone (Q & R) while maintaining the invariant.

11-21© Gunnar Gotshalks

Loop Design – 5

 LI ≡ DV = D*Q + R ∧ R ≥ 0

 while COND { OP2 –2– }

• Question 2 – Is LI still true after OP2 is executed?
 COND ≡ R ≥ D True before OP2 exec
 OP2 ≡ Q ← Q + 1 ; R ← R – D
 Therefore Q’ = Q + 1 & R’ = R - D
» After OP2 show second part of LI is still true

> R’ ≥ 0 LI second part
⇒ (R – D) ≥ 0 Substitute equality
⇒ R >= D Rearrangement is true from COND

 Therefore R’ ≥ 0 is true

11-22© Gunnar Gotshalks

Loop Design – 6

 LI ≡ DV = D*Q + R ∧ R ≥ 0

 while R ≥ D {
 Q ← Q + 1

 R ← R – D
 }

• Question 3a – Does COND eventually become false?
» Every time around the loop OP2 reduces the size of

R by D > 0.
» In a finite number of iterations R must become less

than D.

11-23© Gunnar Gotshalks

Loop Design – 7

 LI ≡ DV = D*Q + R ∧ R ≥ 0

 COND = R ≥ D

• Question 3b
Does ~ COND and LI ⇒ postcondition for OP ?

» ~ COND ⇒ R < D
» LI ⇒ DV = D*Q + R & R ≥ 0
» Together ⇒ DV = D*Q + R & 0 ≤ R < D
» Equals Problem spec

0 ≤ R < D & DV = D*Q + R

11-24© Gunnar Gotshalks

Loop Invariant – Example 1a

• Copy a sequence of characters from input to output
 read aChar from input
 while aChar ≠ EOF

 write aChar to output
 read aChar from input
 end while

• The loop invariant is the following
In[1 .. N] = Out[1 .. i - 1] + aChar + In [i + 1 .. N]
totalWork = workDone + workToDo

11-25© Gunnar Gotshalks

Loop Invariant – Example 1b

• The loop invariant is the following
In[1 .. N] = Out[1.. i - 1] + aChar + In [i + 1 .. N]

• The loop invariant can be simplified by removing
Input[i+1 .. N] from each side of the relationship

In[1 .. i] = Out[1 .. i - 1] + aChar

• It is the simplified form that one sees most often

11-26© Gunnar Gotshalks

Loop Invariant – Example 2a

• Compute the sum of the integers 1 to N
 sum ← 0 ; p ← 0
 loop exit when p = N
 p += 1 ; sum += p
 end loop

• The loop invariant is the following

 = sum +

totalWork = workDone + workToDo

Σ i 0
 n Σ j p+i

 n

11-27© Gunnar Gotshalks

Loop Invariant – Example 2b

• The loop invariant is the following

 = sum +

• Simplify by removing the following expression from
each side of the relationship

To get

 = sum

Σ i 0
 n Σ i p+1

 n

Σ i p+1
 n

Σ i 0
 pΣ i 0
 p

11-28© Gunnar Gotshalks

Loop Invariant – Example 3a

• Compare string A[1..p] with string B[1..p].
Last character in string must be EOS
 i ← 1

loop exit when A[i] ≠ B[i] or A[i] = EOS
 i += 1
end loop

A[1 .. p] ? B[1 .. p] totalWork

 = A[1 .. i -1] = B[1 .. i -1] workDone
 + A[i .. n] ? B[i .. n] workToDo
 & i ≤ p & A[p] = B[p] = EOS
 Support conditions

11-29© Gunnar Gotshalks

Loop Invariant – Example 3b

• The loop invariant is the following.
 A[1 .. p] ? B[1 .. p]
 = A[1 .. i -1] = B[1 .. i -1]
 + A[i .. n] ? B[i .. n]
 & i ≤ p & A[p] = B[p] = EOS

• The simplified loop invariant
 A[1 .. i -1] = B[1 .. i -1]
 & i ≤ p & A[p] = B[p] = EOS

11-30© Gunnar Gotshalks

On Correspondence

• Algorithm input and output can frequently be
described with regular expressions – consisting of
sequence, choice and loops over data elements

• Data structures correspond when the same loop
structure can be used to describe both structures

– including loop conditions

• Data structures do not correspond when their loop
structures do not nest within each other or loop
conditions are different

11-31© Gunnar Gotshalks

Packet & Sentence Example – 1

• Consider a sequence of email packets sent over the
network

• Information within the packets is a sequence of
sentences

• Loop over packets does not correspond with loop
over sentences and vice versa

11-32© Gunnar Gotshalks

Packet & Sentence Example – 2

• Sentences span packet boundaries
» Do not have an integral number of sentences

within every packet
» Do not have have an integral number of packets

within every sentence

...

Packet

Sentence

...

Sentence

Packet

11-33© Gunnar Gotshalks

Packet & Sentence Example – 3

• Using the Direct Mapping Rule you should be able
to point to the program text, draw a box and say
» One packet corresponds to this box

> No more and no less
» One sentence corresponds to this box

> No more and no less

• In modelling both sentences and packets it is
necessary to have explicit loops for each or else you
violate the Direct Mapping Rule

