Stepwise Refinement Top Down Design

On Top Down Design

- Useful in creating a function or algorithm when the input and output data structures correspond
 - » If the input and output data structures do not correspond then one needs communicating processes to correctly design an implementation

Program ≠ function

• **NOT USEFUL** for designing programs

Real systems have no top

On Mathematics

I saw a high wall and as I had a premonition of an enigma, something that might be hidden behind the wall, I climbed over it with some difficulty . . . On the other side I landed in a wilderness and had to cut my way through with a great effort until – by a circuitous route – I came to the open gate, the open gate of mathematics.

M.C. Escher

Escher – Circle Limit 1 (1958)

Escher – Plane Filling 1 (1951)

Escher Waterfall 1961

Stepwise Refinement

- Also known as functional decomposition and top down design
- Given an operation, there are only the following three choices for refinement
 - » Sequence of sub-operations

> OP = OP1 ; OP2 ; ... ; OPn

» Choice of sub-operations

 $> OP \equiv If COND then OP1 else OP2$

- » Loop over a sub-operation
 - > OP = OP1 while COND do OP2

Stepwise Refinement

 Is an recursive process of applying one of the previous three choices (with variations) to suboperations until program text can be written

Stepwise Refinement Procedure

Sequence Questions

OP ≡ OP1 ; **OP2** ; ... ; **Opn**

Does the sequence of operations **OP1** followed by **OP2** followed by ... followed by **OPn** accomplish the upper level operation **OP**

precondition $OP \Rightarrow$ precondition OP1postcondition $OP1 \Rightarrow$ precondition OP2postcondition $OP2 \Rightarrow$ precondition OP3... postcondition $OPn-1 \Rightarrow$ precondition OPnpostcondition $OPn \Rightarrow$ postcondition OP

Choice Questions

$OP \equiv if COND then OP1 else OP2$

Does the operation OP1 accomplish the operation OP when the condition COND is true

 $COND \Rightarrow$

precondition $OP \Rightarrow$ precondition OP1

and postcondition $OP1 \Rightarrow postcondition OP$

Does the operation OP2 accomplish the operation OP when the condition COND is false
 not COND ⇒
 precondition OP ⇒ precondition OP2
 and postcondition OP2 ⇒ postcondition OP

Let LI be a loop invariant, which must always be true after OP1 is executed – except temporarily within OP2

Loop Questions – 2 of 4

Question 0 – What is the LI?

- » In general it is an extremely difficult question to answer. It contains the essential difficulty in programming
- » Fundamentally it is the following

LI = totalWork = workToDo + workDone

Loop Questions – 3 of 4

Loop Questions – 4 of 4

Example Loop Design

- Consider a program loop which calculates the division of positive integers.
 - » D is the divisor and D > 0
 Q is the quotient
 R is the remainder
 DV is the dividend and DV > 0

• We are to compute **Q** and **R** from **D** and **DV** such that the following is true.

 $0 \le R < D \land DV = D^*Q + R$

- Question 0 Find the loop invariant
 - After consulting an oracle we have determined that the following is an appropriate loop invariant
 > this is the creative part of programming

 $LI \equiv DV = D^*Q + R \land R \ge 0$

```
OP = -0- LI = DV = D*Q + R ∧ R ≥ 0

OP1

-1-

while COND { OP2 -2- }

-3-
```

- What we have to do is to determine COND, OP1, and OP2 while checking that the verification questions are satisfied.
 - » In practice we iterate between loop invariant and the program until we have a match that solves the problem.

$LI = DV = D^*Q + R \land R \ge 0$

• Question 1 – Make LI true at the start

 $\mathsf{OP1} = \mathsf{Q} \leftarrow \mathsf{0} \; ; \; \mathsf{R} \leftarrow \mathsf{DV}$

- > LI is true
- $\Rightarrow DV = D^*0 + DV$
- » DV > 0 from the precondition \Rightarrow R ≥ 0

```
LI = DV = D^*Q + R \land R \ge 0
```

```
while COND { OP2 -2- }
```

• Question 2 – Is LI still true after OP2 is executed?

 $COND = R \ge D$ True before OP2 exec

 $OP2 = Q \leftarrow Q + 1 ; R \leftarrow R - D$

Therefore $Q' = Q + 1 \wedge R' = R - D$

» After OP2 show LI first part is true

- > DV = D*Q' + R' LI first part = D*(Q + 1) + (R - D) Substitute equality = D*Q + D + R - D Rearrange = D*Q + R True before OP2, So still true
- » See effect of moving data from workToDo (D & DV) to workDone (Q & R) while maintaining the invariant.

```
LI = DV = D^*Q + R \land R \ge 0
```

```
while COND { OP2 -2- }
```

• Question 2 – Is LI still true after OP2 is executed?

 $COND = R \ge D \qquad True before OP2 exec$

 $OP2 \equiv Q \leftarrow Q + 1$; $R \leftarrow R - D$

Therefore Q' = Q + 1 & R' = R - D

- » After OP2 show second part of LI is still true
 - R'≥0
 ⇒ (R D) ≥ 0
 ⇒ R >= D
 LI second part
 Substitute equality
 Rearrangement is true from COND
 Therefore R' ≥ 0 is true

```
LI = DV = D^*Q + R \land R \ge 0
```

```
while R ≥ D {
Q ← Q + 1
R ← R - D
}
```

- Question 3a Does **COND** eventually become false?
 - » Every time around the loop OP2 reduces the size of R by D > 0.
 - » In a finite number of iterations R must become less than D.

$$LI = DV = D^*Q + R \land R \ge 0$$

$\textbf{COND} = \textbf{R} \ge \textbf{D}$

- Question 3b
 Does ~ COND and LI ⇒ postcondition for OP ?
 - $\sim \mathsf{COND} \Rightarrow \mathsf{R} < \mathsf{D}$
 - » LI ⇒ DV = D*Q + R & R ≥ 0
 - » Together ⇒ $DV = D^*Q + R$ & $0 \le R < D$

» Equals Problem spec $0 \le R < D$ & $DV = D^*Q + R$

Loop Invariant – Example 1a

- Copy a sequence of characters from input to output
 read aChar from input
 while aChar ≠ EOF
 write aChar to output
 read aChar from input
 end while
- The loop invariant is the following

<u>In[1..N] = Out[1..i-1] + aChar + In[i+1..N]</u> totalWork = workDone + workToDo

Loop Invariant – Example 1b

- The loop invariant is the following
 In[1..N] = Out[1..i-1] + aChar + In [i + 1..N]
- The loop invariant can be simplified by removing Input[i+1..N] from each side of the relationship
 In[1..i] = Out[1..i-1] + aChar
- It is the simplified form that one sees most often

Loop Invariant – Example 2a

• Compute the sum of the integers 1 to N

```
sum \leftarrow 0; p \leftarrow 0
loop exit when p = N
p += 1; sum += p
end loop
```

• The loop invariant is the following

Loop Invariant – Example 2b

• The loop invariant is the following

$$\sum_{0}^{n} i = sum + \sum_{p+1}^{n} i$$

• Simplify by removing the following expression from each side of the relationship

To get

$$\Sigma_{0}^{n} i = sum$$

Т

Loop Invariant – Example 3a

• Compare string A[1..p] with string B[1..p]. Last character in string must be EOS

```
i ← 1
loop exit when A[i] ≠ B[i] or A[i] = EOS
i += 1
end loop
```

```
\begin{array}{ll} A[1..p]?B[1..p] & totalWork \\ &= A[1..i-1] = B[1..i-1] & workDone \\ &+ A[i..n]?B[i..n] & workToDo \\ \& i \leq p \& A[p] = B[p] = EOS \\ & Support conditions \end{array}
```

Loop Invariant – Example 3b

• The loop invariant is the following.

A[1..p]?B[1..p] = B[1..i-1] = B[1..i-1] + A[i..n]?B[i..n] = B[i] = EOS

• The simplified loop invariant

A[1..i-1] = B[1..i-1]& $i \le p$ & A[p] = B[p] = EOS

On Correspondence

- Algorithm input and output can frequently be described with regular expressions – consisting of sequence, choice and loops over data elements
- Data structures **correspond** when the same loop structure can be used to describe both structures
 - including loop conditions
- Data structures do not correspond when their loop structures do not nest within each other or loop conditions are different

Packet & Sentence Example – 1

- Consider a sequence of email packets sent over the network
- Information within the packets is a sequence of sentences
- Loop over packets does not correspond with loop over sentences and vice versa

Packet & Sentence Example – 2

- Sentences span packet boundaries
 - » Do not have an integral number of sentences within every packet
 - » Do not have have an integral number of packets within every sentence

Packet & Sentence Example – 3

- Using the **Direct Mapping Rule** you should be able to point to the program text, draw a box and say
 - » One packet corresponds to this box
 - > No more and no less
 - » One sentence corresponds to this box

> No more and no less

 In modelling both sentences and packets it is necessary to have explicit loops for each or else you violate the Direct Mapping Rule