
26-1© Gunnar Gotshalks

Designing Classes
Part 1

26-2© Gunnar Gotshalks

Basis

• Look at slides on Abstract Data Types
» They give much of the underlying basis

• Types of features
• Properties of features
• Documentation

• Here we give some additional guidelines

26-3© Gunnar Gotshalks

Designing Classes

• Experience shows it is critical to properly design
class interfaces, especially in multi-person projects

• Want a set of design principles that can lead to
quality and durable classes

There are no rules

• We are interested in how a class will appear to its
clients

Not the internals

• Make an interface
* simple * easy to learn
* easy to remember * able to withstand change

26-4© Gunnar Gotshalks

Side Effects – Referential Transparency

• Functions should not have side effects
» Do not return a value and change state
» A contentious issue

Efficiency being the prime motivation for
functions with side effects

• Supporting rationale
An expression is referentially transparent if any
sub-expression may be replaced with its value
without changing the expression

26-5© Gunnar Gotshalks

Side Effects – Example Problem

• Functions are used in expressions, consider the
following
INTEGER get_integer is ... end

Read integer from an input and return the result

• Use it in an expression (as functions are intended to
be used)
result ¨ get_integer + get_integer

Reads two integers from the input

• Referential transparency says we can do
result ¨ 2 * get_integer

Reads one integer from the input

26-6© Gunnar Gotshalks

Side Effects – Problem Solution

• For input the design should be as follows
get_integer is a procedure that saves value in an

attribute
last_integer : integer
get_integer is ... last_integer ¨ the_value end

Reference attribute when you want the value
 result ¨ 2 * last_integer

or result ¨ last_integer + last_integer
Both expressions use one integer from the input

Use get_integer twice to read two values
• Program is clear with no surprises
• Can reason more easily about the program

26-7© Gunnar Gotshalks

Side Effects – Counter Rationale

• Consider the case of removing an item from a data
structure

remove (KEY : key) : DATA is ... end
• Need to search for the object
• Useful to return data associated with the key
• Have function with side effects

• Consider alternative
data ¨ search (key)
remove (key)

Two searches –!inefficient

26-8© Gunnar Gotshalks

Side Effects –!Rebuttal on Efficiency

• Use the same design as get_integer
last_data : DATA
remove (KEY key)
 is ... last_data ¨ the_value end

• Remove saves the data in an attribute
• User accesses the data if they want it
• Clearer as to what is happening

• Keeping the last value, or current position (cursor) is
a useful design strategy

• Reduce number of functions with side effects
• Can have operations relative to current position

26-9© Gunnar Gotshalks

Side Effects –!Rebuttal on Efficiency –!2

• Random number generation
value ¨ random

Changes the "seed" on each call

• Poor abstraction Æ poor design

• Good abstraction Æ good design
• The underlying notion is of a sequence of

random numbers
• This abstraction is data based –!not operation

based
random.forth
value ¨ random.item

26-10© Gunnar Gotshalks

Active Data Structures

• Fits with functions with no side effects
» Maintain

current object
current position
etc.

» Provide methods that are relative to current
after, next, forth
before, previous, back
replace (data) – work on current

» For singly linked lists
Automatically save pointer to previous node for
the client

26-11© Gunnar Gotshalks

Side Effects – Other Problems

• Even when the programmer knows about the side
effects problems can occur

Suppose you program the following where f_b
is a function with side effects

r ¨ f_a (f_b , f_b)
 An optimizing compiler, may see f_b as a
function and replace one of the calls with the
result of the other call

r ¨ f_a (f_b , f_b)
 Which call is done first? Compiler dependent.

Order of parameter evaluation is rarely part of a
language definition

26-12© Gunnar Gotshalks

How Many Arguments for a Feature

• Arguments come in two types
» operand

• Value needed to do work
• Must appear as an argument

» option
• Value used to make a choice as to how to do the

work –!output in blue in 20 point Helvetica
• Should not appear as an argument

• For a good design
Options are set with independent procedures

object.set_font(...) object.set_font_size(...)

26-13© Gunnar Gotshalks

Class Size

• Should not be an issue
» Include what must be included

• Design a complete, orthogonal set of methods
• User has a simple, complete control of objects
• No side effects among functions

» Include additional methods that can be justified
• Increase the efficiency of combinations of

operations
• Simplify user manipulation of objects
• Provide aliases

– Easier use
– Keep uniform names across classes for equivalent

semantics

