
08-1© Gunnar Gotshalks

Assertions

08-2© Gunnar Gotshalks

Assertions

• Boolean expressions or predicates that evaluate to
true or false in every state

• In a program they express constraints on the state
that must be true at that point

• Associate with
» Individual program statements
» functions
» classes

08-3© Gunnar Gotshalks

Assertions & Correct Programs

• Specify clearly, precisely and succinctly
» What is expected and guaranteed by each

component – class, function and statement

• The essence of documentation

• Essential for debugging

• Aids in fault tolerance

How to write correct programs and know it
– Harlan Mills

08-4© Gunnar Gotshalks

• Arithmetic operators
+ – * / ^ (exponent)
// div (integer division)
\\ mod (modulus / remainder)

• Relational operators
= ≠ ≤ ≥ < >

• Boolean operators & logic
 ∧ and ∨ or ⊕ xor ¬ ~ not
 → implies ↔ iff

Assertion Language Symbols

08-5© Gunnar Gotshalks

• Predicate logic
 ∀ forall ∃ exists (there exists)
 such that
 • it is the case that (it holds that)

• Set operators
∈ member_of ∉ not_member_of

 ⊃ ⊇ ⊂ ⊆ contains
 ⊄ does_not_contain

 ∩ intersection ∪ union
#S number of members of the set S

Assertion Language Symbols – 2

08-6© Gunnar Gotshalks

Assertion Language Special Symbols

Result – result of a function but only in ensure assertions
Current @ – current object
Void – not attached

Mathematical notation
name – value of the variable name before a routine starts
name' – value of the name after a routine terminates

Eiffel notation
name – value of the variable name after a routine terminates
old name – value of the name before a routine starts

08-7© Gunnar Gotshalks

Quantified Expression

• Used to express properties about sets of objects

Quantifier Range_Expr [Restriction] • Property
Quantifier ∀ forall ∃ exists (there exists)
Range_Expr var_name : set_of_values
Restriction Boolean expression or, recursively,
 a quantified expression

 Property Boolean expression or, recursively,
 a quantified expression

such that
it holds /
it is the case that

08-8© Gunnar Gotshalks

Range Expression examples

• Type range – each value is of a given type
 v : VEHICLE

• Sequence range – each value is in a sequence
 k : low .. high

• Member range – each value is a member in a set
 c ∈ children

08-9© Gunnar Gotshalks

Textual Notation example

class CITIZEN feature
 name, sex, age : VALUE
 spouse : CITIZEN
 children, parents : SET[CITIZEN]
 single : BOOLEAN is ensure Result iff (spouse = Void) end
 divorce is
 require not single
 ensure single and (old spouse) . single
 end
invariant
 single or spouse.spouse = Current
 parents.count = 2
 for_all c member_of children it_holds
 (exists p member_of c.parents it_holds p = Current)
end

08-10© Gunnar Gotshalks

Mathematical Notation example

class CITIZEN feature
 name, sex, age : VALUE
 spouse : CITIZEN
 children, parents : SET[CITIZEN]
 single : BOOLEAN is ensure Result ↔ (spouse = Void) end
 divorce is
 require ~ single
 ensure single ∧ spouse . Single
 end
invariant
 single ∨ spouse . spouse = @
 parents . count = 2
 ∀ c ∈ children • (∃ p ∈ c . parents • p = @)
}

08-11© Gunnar Gotshalks

• Set enumeration – list the members
S = { a, e, i, o, u }

The set of vowels in the English alphabet

• Set comprehension – logically specify members
Notice that the forall is implicit not explicit

{ x , y : Integer (0 < x < 10) ∧ (1 ≤ y ≤ 9) • x3 + y3 }
The set of the sums of pairs of the cubes of single
digit integers greater than zero

Specifying Members of a Set

08-12© Gunnar Gotshalks

Pre-Conditions

• Statement syntax
» require boolean expression

• Where within function/procedure
» write just before the local clause, if it exists

nonZero (row , col : INTEGER) : BOOLEAN is
-- Result true if non-zero element at <row, col>
require 0 < row and row < MaximumRow + 1
 0 < col and col < MaximumCol + 1
do
...
end

08-13© Gunnar Gotshalks

Post-Conditions

• Statement syntax
» ensure boolean expression

• Where within function/procedure
» write just before the end of body

NonZero (row , col : INTEGER) : BOOLEAN is
-- Result true if non-zero element at <row, col>
do
...
ensure Result =
 (search_by_row(row, col) /= void and
 search_by_row(row, col).data /= 0)
end

08-14© Gunnar Gotshalks

State changes

• Show relationship between initial and final values

• At the end of the body the final values are in effect

• Refer to initial values using the keyword old

addElement (element : TYPE) is
require size < Capacity
do
...
ensure size = old size + 1
end

08-15© Gunnar Gotshalks

Assertions are tagged

• Tag names are used to identify assertions

addElement (element : TYPE) is
require enough_space: size < Capacity
do
...
ensure one_larger: size = old size + 1
end

08-16© Gunnar Gotshalks

Non-executable assertions

insert_in_row(matElem : MATRIX_ELEMENT) is
 -- Insert the matrix element in the current row "row"
 require …
 local …
 do …
ensure
 -- contains(MatrixElement(data, row, column)) at < row, column >
end

• Use comments if you cannot write an executable
assertion

• Use already defined functions or custom written functions

08-17© Gunnar Gotshalks

Loop Invariants & Loop Syntax

from
 init statements
invariant
 assertions for invariant
until
 exit condition
loop
 body statements
variant
 integer expression
end

• Can invoke Boolean
 functions

• Use agents to implement
 predicate calculus
 expressions

• Always non negative

• Body decreases value
 on every iteration

• Ideally 0 on loop exit

08-18© Gunnar Gotshalks

Loop Invariant Example

• Inserting an element into a sorted singly linked list

 row := matElem.row ; column := matElem.column
 from p := rowList @ row
 invariant ???
 until
 p = void or p.column >= column
 loop
 pp := p ; p := p.next_in_row
 end

… …

ppp

next_in_row

08-19© Gunnar Gotshalks

Loop Invariant Example – 2

• Using mathematical notation

invariant
 predecessor_relation: (pp = void ∧ p = head)

 ∨ (pp ≠ void ∧ pp . next = p)

 predecessor_before_data: pp ≠ void ∧ pp . data < data

 data_less_than: ∀ k : head .. pp • k . data < data

08-20© Gunnar Gotshalks

Loop Invariant Example – 3

• Eiffel executable assertion.
• Column_less_than uses an agent to implement the invariant

> Agents and loop invariants are discussed in other slides

 from p := rowList @ row
 invariant
 predecessor_relation : (pp = void and p = rowList @ row)
 or (pp /= void and pp.next_in_row = p)
 predecessor_before_column: pp = void or pp.column < column
 -- forall k : rowList @ row .. pp :: k.column < column
 data_less_than : column_limit(rowList @ row, pp,
 agent less_than(?, column))
end

08-21© Gunnar Gotshalks

Check Assertion

• Within the body of a routine you can insert a check clause

• The check clause is executed and if an assertion is false
then an exception occurs

• Used to remind the reader of a non obvious fact that could
be deduced

If full then error := overflow
else
 check
 representation_exists : representation /= Void
 end
 representation.put(x) ; error := none
end

08-22© Gunnar Gotshalks

Class Invariants

• Appear in the invariant clause just before the end of
the class definition

class SPARSE_MATRIX
...
invariant
 actualRows <= maxRowCol
 actualCols <= maxRowCol
 -- forall row : maxNonzeroRow + 1 .. actualRows
 -- :: empty (rowList [row])
 -- forall col : maxNonzeroCol + 1 .. actualCols
 -- :: empty (colList [col])
end -- SPARSE_MATRIX

08-23© Gunnar Gotshalks

Class Invariants – 2

• Class invariants define which states of the ADT are
valid

• True at stable times
» After make (object creation)
» After every exported feature call

> Could be false during a feature call as various
sub-states change

• Invariant is implicitly a part of every pre and post
condition

08-24© Gunnar Gotshalks

Class Invariants – examples

• See slides 9 & 10 in this set of slides
» Relationship between parents and children
» Relationship between spouses

• See Abstract data type documentation slides 18 .. 23
» Relationship between first and last pointers in a

circular queue and the length of the queue

08-25© Gunnar Gotshalks

General Guideline

• Assertions may be written in many ways
» Select the representation to be as clear and easy to

understand as possible
> Point is to convey information, not provide a

puzzle to be solved
» Use notation that is close to the meaning of the

relationships involved – no need to restrict to first
order predicate calculus

> Set notation
> Bag notation
> Sequence notation

08-26© Gunnar Gotshalks

Assertion Monitoring

• Eiffel provides multiples levels of assertion monitoring
» See the project settings & page 393

• Always should be on during debugging

• Turn off as little as possible only if time is critical and
the system can be trusted

