
07-1© Gunnar Gotshalks

Genericity

Parameterizing by Type

07-2© Gunnar Gotshalks

Generic Class

• One that is parameterized by type
» Works when feature semantics is common to a set

of types

• On object declaration the parameter is assigned a
type
» For example

rowList : ARRAY [MATRIX_ELEMENT]
» We want an array of pointers to matrix elements
» All the array operations for rowList are customized

to use matrix elements

07-3© Gunnar Gotshalks

Common Generic Classes

• Collection classes – classes that are collections of
objects
» Strong typing requires specifying a type
» But feature semantics is independent of type

• Examples
» Sets, Stacks, Arrays, Queues, Sequences

rowList : ARRAY [MATRIX_ELEMENT]
rowList : ARRAY [INTEGER]
rowList : ARRAY [STACK [ELEPHANTS]]

07-4© Gunnar Gotshalks

Your Generic Classes

• You can write generic classes

• Why is this useful?
» Reuse

> The basic operations (e.g. extend) are the same.
> Do not have to re-write the same program text over

and over again.

» Reliability
> Only write the program text once

07-5© Gunnar Gotshalks

Generic Stack

class STACK [G] feature
 count : INTEGER -- number of elements
 empty : BOOLEAN is do ... end
 full : BOOLEAN is do ... end
 item : G is do ... end
 put (x : G) is do ... end
 remove is do ... end
end -- STACK

• Can use parameter G where ever a type is expected

07-6© Gunnar Gotshalks

Generic Array

class ARRAY [P]
create make
feature
 make (minIndex , maxIndex : INTEGER) is do ... end
 lower, upper, count : INTEGER
 put (value : P ; index : INTEGER) is do ... end
 infix "@" , item (index : INTEGER) : P is do ... end
end -- ARRAY

07-7© Gunnar Gotshalks

Using the Generic Array

circus : ARRAY [STACK [ELEPHANTS]]
create circus . make (10 , 200)

st_el : STACK [ELEPHANTS] -- element to put in the array
create st_el

circus . put (st_el , 30) -- put an element into the array

st_el2 : STACK [ELEPHANTS]

st_el2 := circus @ 101 -- get an element from the array

07-8© Gunnar Gotshalks

The Type Rule – no Genericity

• Assume class C has the feature f (a : T) : U is ...

• A call of the form x . f (d) appearing in an arbitrary
class B where x is of type C is type-wise correct if
and only if
» f is available to B

> exported to B (generally or selectively)
» d is of type T

> With inheritance d can be a descendent of T
» The result is of type U

07-9© Gunnar Gotshalks

The Type Rule – with Genericity

• Assume C is generic, with G as its parameter and
has the feature h (a : G) : G is ... end

• A call to h, appearing in an arbitrary class B, will be
of the form y . h (e) where y has been declared of
type C [V]

• Then
» h is available to B

> exported to B (generally or selectively)
» e must be a descendent of type V (V is a

descendent of itself)
» The result is of type V

07-10© Gunnar Gotshalks

Types of Genericity

• Types
» Unconstrained
» Constrained

• The previous examples showed unconstrained
genericity
» Any type could be passed as a parameter

07-11© Gunnar Gotshalks

Constrained Genericity

• Used when the generic type parameters must satisfy
some conditions

• The following makes sense only if P has the
feature ≥

class RHINO [P] feature
 ...
 minimum (x , y : P) : P is do
 if x ≥ y then
 Result := y
 else
 Result := x
 end
 ...
end

How we enforce
constraints is
discussed in
Inheritance Techniques

07-12© Gunnar Gotshalks

Constrained Genericity – 2

• In general use the following syntax for constrained
genericity
» NAME [TYPE –> CONSTRAINING_TYPE , ...]

> DICTIONARY [G , H –> HASHABLE]

• The –> indicates inheritance
» H must be a type that inherits from HASHABLE

• Inheritance guarantees the type passed has all the
features one needs in the context of its use

• Unconstrained genericity is really written as follows
> STACK [G –> ANY]

07-13© Gunnar Gotshalks

Discussion on Genericity

• What programming languages offer genericity that
you know of? Java? C++? Other?

• C++ has the template: Set < int > s ;

• Java had no genericity until v1.5. It is similar to C++.

• What is the effect of genericity on
» compile time
» size of the generated code
» execution time
» execution space

• Warning: generics cheap in Eiffel – expensive in C++

07-14© Gunnar Gotshalks

Does run-time vs. compile time matter?

• Principle: When flying a plane, run-time is too late to
find out that you don’t have landing gear!

• Always better to catch errors at compile time!
• This is the main purpose of Strong Typing [OOSC2,

Chapter 17].
• Genericity helps to enforce Strong Typing, i.e. no run-

time typing errors
» LIST[INTEGER]
» LIST[BOOK]
» LIST[STRING]

