
05-1© Gunnar Gotshalks

Objects

Run time direct instances of classes

05-2© Gunnar Gotshalks

Fields

• The attributes within a class are a template for a collection
of fields in an object

 class PERSON
 feature

 name : STRING
 sex : GENDER
 age : INTEGER

 end -- class PERSON

a_Person
name
sex
age

05-3© Gunnar Gotshalks

Objects

• Variables with a class for a type

• Must have a name declared and the name must be
attached to the object

• Using an object requires two steps: declaration and
creation

 p : PERSON -- declare the name p
 create p -- create and attach object to p

 w : PERSON -- declare the name w
 create w.make("Me") -- create via a function

05-4© Gunnar Gotshalks

Creation Operator

• create is akin to new in C++ and Java

• The 4 steps
» Create an instance of the type

Allocate enough memory for the instance
» Initialize each field to default values
» Attach the reference to the variable
» Execute the procedure (if any) to complete initialization

05-5© Gunnar Gotshalks

Reference types

• p is used to refer to an instance of type PERSON

 p : PERSON

• Create and attach object to p – p is attached

 create p

• Think of p as a pointer
For type safety, unlike C/C++, the pointer cannot be
de-referenced

p

PERSON

p
void

05-6© Gunnar Gotshalks

Reference Types – 2

• In general, declaring a type means the variable is a
reference to an instance of the type

• Primitive types – INTEGER, REAL, DOUBLE, CHAR –
are not references, they are statically allocated
(expanded)
» They are still first class objects – no repackaging as in

Java

• Expansion means the reference is replaced with the
fields of the referenced object

• Any reference can be expanded
» Provided there are no cycles

05-7© Gunnar Gotshalks

Models & Objects

Abstract
Data Type

Class

Model
Object

Software
Object

Model / Template Instance

Abstract

Concrete

instance ofimplements

05-8© Gunnar Gotshalks

Copying

a := y – copies only the reference

a := y.twin
 – shallow copy – one level copy

– new storage space is created
– y must exist

a := y.deep_twin
– deep copy – all levels

 – new storage space is created
– y must exist

a . copy(y)
– shallow copy

 – a exists, replace fields of a with those in y
– NO new storage

05-9© Gunnar Gotshalks

Copying – 2

Almavia

SusannaFigaro

A
1 A is created

05-10© Gunnar Gotshalks

Copying – 3

Almavia

SusannaFigaro

A
B

2 B := A

3 C := A.twin
C

Almavia

05-11© Gunnar Gotshalks

Copying – 4

Almavia

SusannaFigaro

4 D := A.deep_twin -- all new memory locations

D

05-12© Gunnar Gotshalks

Equality

= – compares references

equal (a , b) – shallow comparison
– compares one level
– works if a is void

a.is_equal (b) – compares one level
– shallow comparison

deep_equal (a , b) – compares all levels
 – deep comparison
 – works if a is void

05-13© Gunnar Gotshalks

Persistence

• Direct dependents
» The direct dependents of an object are the objects

attached to its references

• Dependents
» The dependents of an object are:

> The object itself
> Its dependents
> And – recursively – the dependents of its direct

dependents, etc.

05-14© Gunnar Gotshalks

Persistence Closure Principle

Whenever a storage mechanism stores an
object, it must store with it the dependents
of that object.

Whenever a retrieval mechanism retrieves
a previously stored object, it must also
retrieve any dependent of that object not
already retrieved.

05-15© Gunnar Gotshalks

Composite Objects & Expanded Types

• Consider the following version of class Person
 class PERSON
 feature

 name : NAME
 end -- class PERSON

• We say that Person has a NAME

• Normally NAME is a reference
» Makes it possible for two or more instances of PERSON

to share the same NAME

p1.name p2.name

a_name

05-16© Gunnar Gotshalks

Composite Objects & Expanded Types – 2

• Sharing references leads to aliasing which can lead to
surprises
» p1.name := “John” ; p2.name := p1.name
» print (p2.name) --> John
» p2.name.put(‘x’ , 1)
» print (p1.name) --> xohn -- Probably a surprise

• Could be careful about names always pointing to different
memory locations
» condition: p1.name ≠ p2.name
» But could be difficult to enforce

05-17© Gunnar Gotshalks

Composite Objects & Expanded Types – 3

• Use expanded types to enforce aggregation
» Object has a collection of subparts that are unique to it

feature
 name : expanded NAME

 end -- class PERSON

• Now guarantee
» p1.name ≠ p2.name
» Still permit: p1.name . is_equal (p2.name)

05-18© Gunnar Gotshalks

Aliasing

• Occurs when two variables point to the same memory
location

• Can lead to surprises but
» Reference assignments needed to benefit from OO

> Often need two pointers to point to the same object
» Encapsulation makes it possible to avoid dangers of

reference manipulations

a_name

p1.name p2.name

