
04-1© Gunnar Gotshalks

Classes
The Static Structure

Abstract data types equipped with
a possibly partial implementation

04-2© Gunnar Gotshalks

Style Rules

• Read page 180

• Pick a style and stick to it

• Recommend that you use Eiffel style or close
approximation

04-3© Gunnar Gotshalks

Definitions

• A class is a combination of a type and a module

• A module because it is has a data part and an operation
part

• A type because you can declare (and therefore create)
instances of a class

• An object (a variable) is an instance of a class
> Logically, each object has its own copy of the local

attributes and its own copy of the operations in the
class

• A client class C of a suppler class S uses S by declaring
a variable of type S.
» S is a supplier of C – C is a client of S

04-4© Gunnar Gotshalks

Stack – Interface

 class STACK
 feature -- Enquiry and change

 full, empty : BOOLEAN -- functions or attributes ?
 push (x : G) -- a procedure
 pop -- a procedure
 top : G -- function or attribute ?

 end -- STACK[G}

• No Specification of how a stack is implemented

• No implementation of features

• Uniform access principle
» client does not know, nor care, if a returned value is stored (an

attribute) or computed (a function)

04-5© Gunnar Gotshalks

Person Class – 1

 indexing -- For class level documentation
 description: "A simple person"

author: "Gunnar Gotshalks"
date:"2000 Jan 9"

 class PERSON
 create -- list construction features

 make

 feature
 name : STRING -- attributes are usually first
 sex : GENDER
 age : INTEGER

PERSON is a client of
the supplier STRING

04-6© Gunnar Gotshalks

Person Class – 2

 make(n : STRING ; s : GENDER ; a : INTEGER) is
 -- Create a complete non default person
 do
 -- Empty body for this example creation procedure
 end

 set_name (s : STRING) is
 -- Need to explicitly set attribute values
 do
 name := s
 end

04-7© Gunnar Gotshalks

Person Class – 3

 older (a : INTEGER) : BOOLEAN is
 -- Are you older than me?
 do
 if a > age then

 io_put_string ("You are older than me. %N")
 Result := true

 else
 io_put_string ("I am older than you. %N")

 Result := false
 end

 end
 end -- PERSON

PERSON is a client of
the supplier INTEGER

04-8© Gunnar Gotshalks

Client–Supplier BON diagram

• BON stands for
B-usiness O-bject N-otation

PERSON
STRING

INTEGER

BOOLEANGENDER

uses

04-9© Gunnar Gotshalks

Inheritance

 class PERSON inherit
 HOMOSAPIEN
 feature

 end -- class PERSON PERSON

HOMOSAPIEN

Inherits from

BON diagramEiffel text

04-10© Gunnar Gotshalks

Feature Call

 object . function (arguments)

• Evaluate the arguments to the function

• Then apply the function to the object

• In non OO languages this is equivalent to

 function (object , arguments)
» where object = Current = self = this

04-11© Gunnar Gotshalks

Infix Feature Call

• Can define operators to be infix to use standard notation
» Thus

 plus (other : INTEGER) : INTEGER is do ... end
» Is used as

 anInt . plus (otherInt)

• Eiffel has the infix keyword
» Thus

 infix "+" (other : INTEGER) : INTEGER is do ... end
» is used as

 anInt + otherInt

• Also have prefix for unary operators

04-12© Gunnar Gotshalks

Current Instance

• Instance calling the feature is named Current locally
p1 . distance_to (p2) -- example call

 distance_to(p : POINT) : REAL is
 -- Distance between Current point and p

 do
 if (p /= Current) then
 Result := sqrt((x - p.x)^2 + (y - p.y)^2)

 end
 End

» could write as
 Result := sqrt((current.x - p.x)^2
 + (current.y - p.y)^2)

bound to p1

bound to p2

04-13© Gunnar Gotshalks

Current Instance – 2

• Partly like
self – in Smalltalk
this – in C++ and Java

• But uniform access principle has attributes as
parameter-less functions
» Thus the following is illegal as Current.x could be a

function call – one cannot assign a value to a function

 x : INTEGER
 t (y : INTEGER) is
 do
 Current.x := y
 end

04-14© Gunnar Gotshalks

Current Instance – 3

• Current can be used in the following contexts
» Passing instance as a parameter

 a.f (Current)
» Comparing with another reference

 x = Current
» Use as an anchor in anchored declarations

 object : like Current
– Will see this again in inheritance

04-15© Gunnar Gotshalks

Unique names features & parameters

• The following is illegal

 a_var : INTEGER
 …
 a_procedure (a_var : INTEGER) is
 do
 io.put_string(a_var)
 end

a_var cannot be both a feature and a parameter of a
feature

04-16© Gunnar Gotshalks

Selective Exports

• Need to restrict access by clients
• In Java have public, protected and private
• In Eiffel can be more selective

 class S feature
 -- all features exported -- public

 feature { A , B }
 -- export only to A and B -- protected

 feature { NONE }
 -- export to no one -- private, secret

 -- NOT EVEN TO S – include self if needed !

 end -- class S

04-17© Gunnar Gotshalks

System Execution

• Create a certain object
» called the root object for the execution

• Apply a certain procedure to that object
» called the creation procedure

• Not the same as a system top
» NOT the top of the architecture
» Just the start of execution

This is the BIG BANG!

04-18© Gunnar Gotshalks

Class Definition

Class A class is an abstract data type equipped
with a possibly partial implementation.

Deferred / Effective Class
A class which is fully implemented is said to be effective.
A class which is implemented partially, or not at all, is
said to be deferred. Any class is either deferred or effective.

In Java a deferred class is called an abstract class
In Java an interface is a class with all methods
deferred and no objects

04-19© Gunnar Gotshalks

Role of Deferred Classes

• Design and analysis

• Pure description – no implementation details required

• Concentrate on architectural properties

• Provide for variations in implementation while preserving a
particular type

• Provide for evolutionary development and its history

04-20© Gunnar Gotshalks

OO Software Construction

The building of software systems as structured collections
of possibly partial abstract data type implementations

Object oriented software construction
technical definition

04-21© Gunnar Gotshalks

OO Software Construction– 2

• Basis is ADT
• Need ADT implementations
• Can have partial implementations
• System is a collection of classes

» with no one class particularly in charge – no top or main
program

> Although an execution requires a starting location
> In principle could change

• The collection is structured by two inter-class relations
» client – user
» inheritance.

04-22© Gunnar Gotshalks

ADT to Class

• Basic steps in getting a class from an abstract data type
» E1 – Create an ADT
» E2 – Chose a representation
» E3 – Create a mapping of the operations in E1 to the

representation in E2

Public
E1

Secret
E2 & E3

04-23© Gunnar Gotshalks

Class–ADT Relationship

» a – maps a concrete object into an abstract object
» af – function that maps abstract object 1 into abstract

object 2
» cf – function that maps concrete object 1 into concrete

object 2

Abstract_object_1 Abstract_object_2

Concrete_object_1 Concrete_object_2

a a

af

cf

04-24© Gunnar Gotshalks

Class–ADT Consistency Property

cf ; a

Abstract_object_1 Abstract_object_2

Concrete_object_1 Concrete_object_2

a a

af

cf

a ; af ≡

