
02-1© Gunnar Gotshalks

Design
Context and Principles



02-2© Gunnar Gotshalks

Waterfall Model – Software Life Cycle

» At all stages the artifacts produced are documents
> They may be formal – use mathematics and programming

languages
> They may be informal – use natural language

» At all times strive for correctness and precision

Needs analysis – requirements

Architectural design – framework
Detailed design – data, algorithms

Specification – input/output

Implementation – program text
Maintenance – corrections, evolution

Apply recursively at all levels – from system level to subprogram.
Spiral model and evolutionary development are variations



02-3© Gunnar Gotshalks

What is Programming?

• Specifying what to to do and when to do it

• The what consists of the following
» At the assembler level the hardwired instructions

> add, load, store, move, etc.
» At the Eiffel, C, Java level

> assignment, arithmetic, read/write
> Subprogram library, API (Application Program Interface)

• The when consists of specifying in what order to do the "what"
operations
» Control structures – these are the only ones

> sequence        > choice        > loop

• What and when are intertwined – changing one often requires
changing the other



02-4© Gunnar Gotshalks

What is Design?

• Design is the creation of a plan.
» Consider design as imposing constraints on the "when" and

"what" of programming.
» From this perspective, the entire life cycle is comprised of

design at various levels .
> Design bridges the span from requirements to implementation

• Design comes from the root to designate, to name
» In design one names objects and their relationships
» The difficult part is finding the "right" objects and the "right"

relationships
» There must be a correspondence between specification and

implementation.
> The objects and relationships in the specification must

correspond to the objects and relationships in the implementation



02-5© Gunnar Gotshalks

Design within the Lifecycle

• Consider the constraints imposed in the software lifecycle
» Putting together a requirements document constrains what

can be done from all possible programs to the set of programs
corresponding to the requirements

» The specification formalizes the requirements and in the
process adds more constraints.

» Architectural design adds constraints, and so on.
» Even implementation (programming) adds constraints by

specifying in detail every when and what and so is a part of the
design process.

• At each stage, there are fewer choices for what and when.

• At each stage the choices must be made within the constraints
imposed by the earlier choices – or else backtracking to earlier
stages is required



02-6© Gunnar Gotshalks

Seamlessness

Since design pervades the entire software lifecycle it
is important that supporting methods should apply
to the entire lifecycle, in a way that minimizes the
gaps between successive activities

Corollary: Should be easy to move information
among different notations
  formal – program text and mathematics
     <––> informal –  documentation text
     <––> informal – diagrams



02-7© Gunnar Gotshalks

Design for Software Quality – 1

• Readable and understandable
» All Design artifacts – program text included – are primarily to

be read and used by people.
» Execution is incidental

• Works
» Complete – Correct – Usable
» Efficient as it needs to be

> Speed up where necessary after instrumentation

Primary purpose of design is to communicate
with other people – even you are somebody
else in the future, so you must communicate
with yourself



02-8© Gunnar Gotshalks

Design for Software Quality – 2

• Modifiable
» All programs evolve over time
» Make plausible modifications easy

> One sign of a good design is it is easy to modify and adapt  to
changing circumstances

• On Time and on Budget
» Time is money – pay back on investment
» Imbedded systems – programs are only a part of the system



02-9© Gunnar Gotshalks

Principles of Public Design

• Principle of Use
» Programs will be used by people

• Principle of Misuse
» Programs will be misused by people

• Principle of evolution
» Programs will be changed by people

• Principle of migration
» Programs will be moved to new environments by people



02-10© Gunnar Gotshalks

• Correctness
» The ability of a software system to perform according to

specification, in cases defined by the specification
> First write correct programs, then worry about efficiency!!!
> A fast program that is wrong is worse than useless

• Efficiency
» Use an appropriate amount of resources for the task

> Space for storing data and temporary results
> Execution time
> Space – time tradeoff
> Communications bandwidth

• Ease of use – including installation

High Level Design Goals



02-11© Gunnar Gotshalks

Implementation Goals – 1

• Robustness
» The ability of a software system to react in a reasonable

manner to cases not covered by the specification
> Works correctly for defined inputs
> Recover gracefully from unexpected inputs
> Recover gracefully from hardware and algorithm errors

• Adaptability
» Modifiable
» Use in unexpected ways



02-12© Gunnar Gotshalks

Implementation Goals – 2

• Reuse
» The ability of a software system to react in a reasonable

manner when reused

» Use variations in different software products
> same as ... except ...

» NOT just using
> A pot is not reused when boiling water.  It is meant to boil water on

many different occasions
> Reuse -- pot is used to bail a boat, maybe by bending it to fit the

shape of the hull



02-13© Gunnar Gotshalks

Structural Design Aspects

• Tokenization
» What kinds of symbols are in the input and output

• Data structures
» How and what data structures should be selected

• Program structures
» How should a program be structured

• Procedure partitioning
» How should one decide when a set of operations be made into

a procedure

• Class partitioning
» How to decide what goes into a class or module

• Correspondence
» When do structures correspond
» When to use communicating sequential processes



02-14© Gunnar Gotshalks

OO Design Principles

• Abstraction
» Extract fundamental parts

> Describe what is wanted
» Ignore the inessential

> Do not describe how to do it

• Encapsulation – Information Hiding
» Expose only what the user needs to know

> The interface
» Hide implementation details

• Modularity
» Handle complexity using divide and conquer
» Minimize interaction between parts



02-15© Gunnar Gotshalks

OO Design Techniques – 1

• Classes and Objects
» Classes define abstract data types
» Objects are instances of those types

• Interfaces and Strong Typing
» Interface gives the user what they need to know to use objects

from a given class
> API – Application Program Interface

» Strong typing compiler enforces objects are used correctly by
type

> Do not take square root of a colour

• Inheritance and Polymorphism
» Inheritance – single and multiple –  provides for reuse
» Polymorphism invoke the proper method for an object

depending upon its type



02-16© Gunnar Gotshalks

OO Design Techniques – 2

• Assertions
» Equip a class and its features with pre and post conditions,

and invariants
» Use tools to produce documentation out of these assertions
» Optionally monitor them at run time

• Information hiding
» Specify what features are available to all clients, some clients

or no clients

• Exception handling
» Support robustness with a mechanism too recover from

unexpected abnormal situations



02-17© Gunnar Gotshalks

OO Design Techniques – 3

• Genericity
» Write classes with formal generic parameters representing

arbitrary types

• Constrained genericity
» Combination arising from genericity and inheritance to

constrain formal generic parameters to a specific type

• Redefinition of features and deferred features
» Reuse requires the ability to modify an object for a new

environment so features can be redefined
» Some design decisions must be deferred so provide a means

to specify the interface of a  feature without defining how it
does it.


