An Introduction to BON 12/12/99 11:22 AM

An Introduction to BON

Richard Paige

Department of Computer Science, York University

paige@csyorku.ca
July 12, 1998; Revised August 6, 1999

Introduction

As designers and programmers of software, we netionsthat we can use to write down our ideas. When we write programs, we use a programming
language--like Eiffel--to describe how we want the machine to behave. A programming language is a useful notation fawméiggrdhms and for

efficiently implementing systems. However, when we are trying to solve a problem (one that will eventually be implemeotagateiaprogram) a

programming language isn't likely to be the most appropriate notation. When we are problem solving, we probably wonlée wihdabe technical details

that we must worry about when we are programming. When we are problem solving, and when we are designing our systero)evableatut write down
abstractionsusing a notation that is well-suited to expressing abstractions. When we are thinking, we don't want to be forcedterisrdf jprogramming
language idioms--things like registendjile loops, pointers, and the like. We usually want to think in terms of abstractions--high-level concepts like classes,
relationships, components, and so on. And there are better notations for describing these abstractions than programesng languag

If a programming language is appropriate for implementation, but not always for analysis and design, then we likely eresd modi#fion for these latter tasks.
We now briefly summarize one such notation, which will be used in lectures and assignments.

The Business Object Notation

TheBusiness Object Notatipor BON for short, is a graphical notation for describing object-oriented programs and systems. BON is useful, because it is very
simple, because it allows very compact descriptions of systems, and because it supports most of the styles of desamiptienetbsdary for talking about
object-oriented systems. BON works seamlessly with the programming language Eiffel, but can work easily with other progragnageg, like Java or C++.

Throughout this short document, we present examples of the main BON notations. This guide is not meant to be a comptaieotideef@cets of BON; you
are referred to the references for more details.

A gquestion that you may be asking at this point is: why bother with BON, when there are so-called ““industrial-strengytis"liket&tML and OMT available?
One problem with these notations is that they are very large and very complex--in fact, they are too complex to covardetaiyrme one-term course that
must also cover many other topics. A significant reason for using BON in this course is that it is very simple and verny isdieeisible to discuss all of BON
within the scope of a couple of lectures. BON is a good notation for learning the concepts behind object-oriented te€mmogeshave an understanding
of the key object-oriented concepts, like classes, objects, and inheritance, then you may decide to move to differerBuibB@ibhalso has significant
technical advantages over other modeling languages, like UML; refeBee [some details on these.

Terminology
Before continuing, we briefly review some relevant terminology.

A classis the fundamental construct in object-oriented programming. A class is, informally, a type and a module that erfesgpsidatédsfeature may be an
attribute or aroutine An attribute is associated with state; think of it as a variable local to an occurrence of the class. A routine isreitioer @ fa procedure.
A function calculates and returns a value, while a procedure changes state and doesn't return a value.

An objectis a variable with a class for its type. An object is usually said to imstanceof a class. Each object has instances of the attributes that belong to its
class type, and has instances of the routines that belong to the class type

A clientof a clas<C is another class thasesC. Interesting programs are usually made up of a number of classes that interigtvialationshipgmore on
this shortly).

Describing Classes and Obijects

The fundamental notation in BON is that for describing classes. To explain the BON notation for these concepts, we rafstandite example, a class
PERSON

The clasPERSONas three features. Fig. 1(a) shows the BON specification of the class. The name of the class, in all capitals, is gipeafahéndiagradn
The three features aname, ageandgender By default, these features are all public and visible, and can therefore be accessed and used by any clients of
PERSONWe haven't yet specified atypesfor these attributes. If we wanted to provide types, we would write thedftpethe features name, with a colon in
between the name and the type. An example is in Fig.1(b).

file:///IBigBin/Course%20files/3311%20%20Soft%20Desgin/www.rich/Bon/bon.html Page 1 of 10

An Introduction to BON 12/12/99 11:22 AM

Figure 1: Variants of a person class

FERSON FERSOMN

nomne nemme | STRING
g oge | INTEGER
gendar gender - GENDER

[2] Pelswh class [b] Typed interface

We may want to specify that the three features are not visible to all clients of the class. To do this in BON, we draRERSE#Rgain, but this time we also
write in the class the list afients(other classes) that can access the features. Since we do not want to allow any clients to access the featuONidarite
the client list, indicating that the features jarieate.

Figure 2: Class with private, but no public features

FERSCN

—— MO E—]

nene
aga

gendar

If we want to specify that selected classes, BQSSandIRS can access the featurePERSONthen we write the names of these classes on the access list. This
is shown in Fig.3.

Figure 3: Class with an access list

FERSCN

— HQ55, IRE

nene
aga

gendar

We may want to specify a class with some private features - inaccessible to clients directly - but with some publicabutindsetiised by clients to change or
reveal the private features. An example of such a situation is in Fig.4, where we have refined our descripti®fEBf@is® have private attributes and several
routines that can change or reveal the values of attributes.

Figure 4: Class with public routines, private attributes

FERSCN

get_ncene
get_cage
get_gendear
=P nome
P oge

st _gender
— MOME—]

nemme

oge

gender

Clients of the clasBERSONcan access the routingst_name, set_namet, cetera, but cannot directly access the attrimaie®e, age, genddecause they are
not on the access list in Fig. 4. By default, the routines above the private section of the class are accessible byl hisdlexilslity--i.e., being able to specify
particular classes that can access attributes--is more powerful than what is available in languages like Java and C+ (thougkp®ss selective access by
friend classes).

Sometimes, especially when we are drawing BON diagrams with lots of classes, we don't want to describe the featurestbbad@dasam; the name of the

file:///IBigBin/Course%20files/3311%20%20Soft%20Desgin/www.rich/Bon/bon.html Page 2 of 10

An Introduction to BON 12/12/99 11:22 AM

class, and its relationships with other classes, are more important to describe. To this end, Bé@hhessaed forrfor a class - an ellipse containing just the
name of a class. We will see examples soon, but the compressed form is ideal for use when we don't want to focus @f thelaetails

We may want to specify more than classes: we may want to spbjgfits which are variables of a particular class. In Eiffel, we specify objects by declaring
variables of a specific class. For exampl®HERSONvas an Eiffel class, we could declare a varifele of classPERSONby writing

fred : PERSON
In BON, we write objects (which are variables of a class) as rectangles, widmtkef the class at the top of the rectangle, and the name of the variable in
brackets below the class name. If there is only one object of the class that we are interested in, we can omit the veameélef ffig. 5 shows an example.
Objectsjane, bill,andjamesare all variables of cla$¥aRSONIn Eiffel, we would express this diagram as

jane, bil, james : PERSON

to declare thgane, bill andjames are all objects of cla$¥ERSON

Figure 5: Objects associated with class

PERSON
—_—
FPERSON
ger_ncme PERSON
gat_oge (hine)
get_gender
st o
PERSON
saf_crge {I!Jf”}
set_gender
— MONE—]
ncEme PERSON
oage (fettmas)
gender

Contracts

Software contracts -- an important facility for developing reliable and robust software componergseeargitionsandpostcondition@ssociated with

routines. Recall that a precondition of a routine is a boolean expression that states what must be true of the inpuots fbhe ppostcondition is a boolean
expression that states what must be true after the routine has executed. Here is an example of a contract, writtemeieXzaffghld consists of a contract and an
implementation for a proceduremove that belongs to a class that contaitista .

removeis
require notlistis_empty
do
list = list il
ensure list=old (isttail)
end-remove

The precondition (theequire clause) states that the list cannot be empty; the postconditie@néheeclause) states that when the procedure is finished, the
value oflist must be the original value of tlig.tail

Theold keyword can be used in Eiffel postconditions. Thinkldfas a function that can be appliedtty expressiariThe value obld expris the value oéxpr
when the routine was callenld is very useful in expressir@nangesn variables. For example, the effect of an assignment-1 can be specified as

ensure x=old(x) + 1

BON supports writing contracts: you can supply preconditions and postconditions with your routines in the descriptiolas®fFfige 6 contains an example.
ClassPERSONSs refined so as to add contracts to routsetdgeandsetGender The precondition for a routine is labelled with a question mark, ?, in a box,
while the postcondition is labelled with an exclamation mark, !, in a box. (Alternative textual labels sometimes use tihe \@odfost , orrequire and

ensure , instead of the boxed punctuation marks.)

file:///IBigBin/Course%20files/3311%20%20Soft%20Desgin/www.rich/Bon/bon.html Page 3 of 10

An Introduction to BON 12/12/99 11:22 AM

Figure 6: ClassPERSONannotated with contracts and types
i ™
PERSCN

get_cge - INTEGER
get_ncme - STRING
get_gender : GENDER
set_pcemel s STRING §
sat_ogef o INTEGER §
[0 and a==140]
III age =a
sar_gendert g GENMDER §
(=M ALE or g=FEMALE]

III gender=g
——————— NONE

nemne - STRING
oge - INTECER
gender : GENDER

In the BON description, we have supplied contracts for some routines, but not others. We have added interfaces for,taeddyieésformation for each of
the attributes. By providing type information, we have more ways to verify the correctness of our contracts.

The BON assertion language, used to write contracts, is based on typed predicate logic. It uses the standard prederat®tegindguantifier A (and), v

(or), = (not), v (for_all), etc. In general, the text forms of operators are used in textual BON, and the graphical forms in the diagrams.

The basic form of a quantified expression in BON is:
Quantifier Range | Restr » Prop

Quantifier is one o v and El. Prop is a proposition, e.(X >0A ¥. The range can be a type range (i.e., each variable in a list is of a given type) or a

member range. Here are examples.
e Typerange Vv : VEHICLE; p : PERSON
o Member range"‘fﬁ' € children (wherechildrenis a set).

Restr is a restriction on the type range, e.g.,

Vi:INTEGER|i>5...

can be read as ““for all integéuch that is greater than 5".

In propositions, the colon operator : can be used to ask if a variable is of a given type, e.g.,

Vp : PERSON e p : UNDERGRAD

which asks ifp is of typeUNDERGRAD(wWhereUNDERGRADs a descendent of claBERSON

Here is an example of a complete assertion.

Vx : INTEGER; p : PERSON | x> 2 e p: TODDLER A p.age > x

The quantifier introduces bound variatsesndp, with the added restriction that integes greater than 2. The scope of the quantifier is a proposition which
states thap is of typeTODDLERand quenp.ageis greater thar.

file:///IBigBin/Course%20files/3311%20%20Soft%20Desgin/www.rich/Bon/bon.html Page 4 of 10

An Introduction to BON 12/12/99 11:22 AM

BON provides a further kind of assertion that we haven't yet seetlatiseinvariantwhich describes properties - using boolean expressions - that apply to the
class as a whole. We will see an example of a class invariant in the next subsection.

Graphical and Textual Forms

So far, we have seen the use of BON for writing graphical specifications. BON also has a textual notation, which isuanétehy exthe graphical notation.
That is, if a developer writes down a graphical BON specification, there is an equivalent textual BON specification. Tléiwarie§j such an equivalence is in
making the move to implementations. Programs are usually written in a textual form, so if we use BON's graphical notedidripuse able to transform the
BON graphical specifications into a text form as easily as possible.

We demonstrate the equivalence with an example, in the process providing a further example of using contracts. The ecempfesties a further BON
feature-theclass invariantFig. 7 shows a graphical specification.

Figure 7: BON graphical specification

CITIZEN

nuine, sex, uge : VALUE
spouse | CITIZEN
children, purents : SET{CITIZEN]

single : BOOLEAN
|I| Result <-> (spouse=Void)

divorce

not sigle

|I| single and (old spouse).single

invarant

single O spouse spouse=@;

purents.cont=2;

Ve € children®3 p€ c.purents® p=2@
. v

The equivalence textual specification is as follows.

class CITIZEN feature
name, sex, age : VALUE
spouse : CITIZEN
children, parents : SET[CITIZEN]

single : BOOLEAN ensure Resuti<->(spouse=Void) end
divorce

require notsingle
ensure single and (Old spouse).single
end

vai
single or spouse.spouse=Cunent,
.CouNnt=2,
for_allcmember_of chidrenit_holds
(exists pmember_of c.parentsit_holds p=Current)
end—dass CITIZEN

The class invariant (denoted using itheariant clause) gives a predicate that must be maintained by all objects of the class. Every routine of tamclass
assume, when it is called, that the invariant is true, and every routine must establish, when it terminates, the cldss invarian

Inheritance

file:///IBigBin/Course%20files/3311%20%20Soft%20Desgin/www.rich/Bon/bon.html Page 5 of 10

An Introduction to BON 12/12/99 11:22 AM

Inheritance is a mechanism for reuse of classes. It is a way to add new features to a class, or to extend a classngitbaliameé any of the clients that use
the class. Inheritance is the way that designers can produce classes that satisfy a very important software enginderitigeppieciplosegrinciple.
Designers want classes that apen in the sense that they are reusable and can be extended to have new features. But designers also want to haveeclasses tha

closed in the sense that clients can use them and rely on them not changing.
The BON diagrams for inheritance are very similar to those used in other object-oriented and visual notations. In inlagréansecthsses are often written in

a compressed form, omitting routines and attributes (especially if the class is very large). Inheritance is drawn aslieectetbfiom the child class (that which
is inheriting) to the parent class. Figures 8(a) and 8(b) show examples.

Figure 8: Inheritance diagrams in BON

ORI PERSGN

FUBLICATION

JOURNAL FAFPER

I’ CIIGE FPERSON

CONEERENCE
FPAFER =

?’C-‘DDLER

(a) A person hierarchy (b) A publication hierarchy

Remember that inheritance can be used to descrilie-ditelationship: in an inheritance hierarchy, the child desgparent class. So, in Fig. 8(@PDDLERs
are (is-a)Y OUNG_PERSO# andPUPILs are (is-ay OUNG_PERSO® et cetera. When setting up an inheritance relationship between two classes, always ask

yourself: is the child class really an example of the base class too?

Inheritance relationships can also be drawn between the detailed visual presentations of classes that we saw earliée, Fa@.&ahgws an inheritance
relationship betweeRERSONandSTUDENT aSTUDENTis-aPERSONWe have drawn the arrow between the two classes, rather than just the elliptical short
forms. In the process, we show some of the routines and attributes that the classes offer.

Figure 9: Detailed view, with inheritance

STUDENT

gar_micHor

set_muafor

— NOME—]
Tl

—

For large systems, we will use the short form when describing inheritance relationships, because otherwise the diagratagesdtigend hard to understand.
For drawing inheritance relationships among only a few classes, it is usually not difficult to understand the diagramg ifctime feotation is used.

Client-Supplier Relationships

BON offers one further kind of relationship that can be drawn between classdrthsupplierrelationship. The notion of a client-supplier relationship is very
simple: there are two classes, one the client, and the other the supplier. Thesetmine facility of thesupplierclass. More often than not, the client may have
an attribute that is of the supplier type, but the relationship can also be used to indicate the use of a routine @rthe suppli

BON actually possesses three kinds of client-supplier relationships. The most important oassisdiatiorrelationship (we talk a bit about the other two
shortly). An example of an association is shown in Fig. 10. TheRERSONSs a client of the clasSTRING The double-line arrow froRERSONo STRING
indicates the client-supplier relationship. The class at the tail of the arrow is the client, and the class at the laeamhofttiee supplier. In this case, the
relationship is such th&®ERSONSs a client of supplieBTRING The relationship is defined so tiRERSONhas two attributedirstnameandlastnameboth of
classSTRING The attributes of thEERSON:lass that are of claSSTRINGare written on the client-supplier arrow.

file:///IBigBin/Course%20files/3311%20%20Soft%20Desgin/www.rich/Bon/bon.html Page 6 of 10

An Introduction to BON 12/12/99 11:22 AM

Figure 10: Association relationship between two classes

. ™
STRING FERSON
cherr_cot firseme | fismame
substring ": SHCmE
i s SRS | gandar
mdex_cf g
L S .

In this particular example, the association arrow is indicatimgsaarelationship betweeRERSONandSTRING classPERSOMNas-aSTRING
A different example of an association relationship would be whereRERSONuses routinequalsof classSTRING This is shown in Fig. 11.

Figure 11: Association, use of routine

. .
ETRING PERSON
cherr_cit norne_aquols| nemme_equices

sulestring ": sab_nome
equals | | e
mdey_of NONE
Framame
: SUFCEHE
. v . 0 ¢

The routinenameEqual®f classPERSONseemingly makes use of some feature of (Ga3RING
Class Header Annotations

BON class diagrams can be further extended with header annotations, designed to give more information about the ctischiahel abhere are several
forms of class header annotation, but the most important ones are shown in Fig. 12.

Figure 12: Class header annotations

Explanatiom

Cleas iz muzed foor & Library.

Cleas iz peraroctetized.

Cleaz iz defermd. Tt hea no
ingtencea, &nd iguzed
clezification putpozes.

Cleaz iz irapleraenting & deferred
clezz, oT mimplenenting &n
BNCEROT ¢ lazs,

Clezs iz (potentielly) persigent.

Cless iz & moot; ingtances roay be
cated &2 sepaTste procezes.

Cleaz iz interfeoed with the outzide
world; goroe featue encepaulates
external corarounication.

BUASEE,

With such annotations, a reader of your class diagrams can learn more about the nature of the class, without havingétaitsaof e class itself.

Clusters

A clusterrepresents a group of related classes (and possibly other clusters) according to some point of view. Classes candepehditeyeuh the particular
characteristics of a system a designer wants to highlight.

file:///IBigBin/Course%20files/3311%20%20Soft%20Desgin/www.rich/Bon/bon.html Page 7 of 10

An Introduction to BON 12/12/99 11:22 AM

Fig. 13 shows an example of a cluster. Clusters of classes (possibly with relationships among the classes) are encodgsestdonraled rectangle. The
rectangle is tagged with the name of the cluster. This name can then be used to refer to the cluster in other diagrams.

Figure 13: A nested cluster

' DATA_STRUCTURES |
i —————= \ a o a "
1

[" SORTING

| mm e e e — e e e e e e e e e - - |

N T

LINEAR_SORT, (__RADIX_SORT } !!
I

HEAPSORT |

I

Advanced Notions

So far, we have seen the basic features of BON. This section discusses some of the more advanced concepts of BON.

Inheritance involving clusters

The inheritance relation between classes can be generalized to apply to clusters. There are three cases. In the &lleleimgriebe a cluster or a class.

1. If all elements in a clust&rinherit from an elemem outside ofX, thenX inherits fromA. One link can be drawn frodXto A.

2. If an elemen# outside clusteY inherits from all elements i, thenAinherits fromY. All links from A to elements ity can be compressed into one link
fromAtoY.

3. An inheritance link between two elements can be compressed into being hidden.

Aggregation

Earlier, we saw association relationships between classes. As we said, these are only one kind of client-supplier ielBt@Xship be precise, there are three
types of client-supplier relationshigssociation, shared associati@ndaggregation We have seen the association relationship so far. Aggregation is new. An
aggregation relation between a client class and a supplier class means that each client instance may be attached tsglier imstances which represent
integral parts of the client. Aggregation is an important semantic concept, so it has a special notation in BON. Aggiegat®diawn as double lines (like
client-supplier) but instead of ending in a single arrow, enddwuble arrow Fig. 14 shows an example.

Figure 14: Aggregation relations
cambustion_chamber

rapulsian
[

In the diagram, featurgropulsionof classVEHICLE s attached to one or more instances of &3 OR Featurecombustion_chambef classMOTORIs
attached to one or more instances of d@¥kINDER Informally, we can say thtOTORIs a “part-of' &/ EHICLE

So what are the differences between association and aggregation? There are two important differences. The first igtegitidth, agletion of the client
implies deletion of the supplier. For example, suppose we had an instdh©d 6 and we decided to get rid of it (in an Eiffel program, we would say that the
instance is “freed' or “garbage collected'). MK@&TORobject has, as a part, instance€¥LINDERobjects. These would be deleted as well.

file:///IBigBin/Course%20files/3311%20%20Soft%20Desgin/www.rich/Bon/bon.html Page 8 of 10

An Introduction to BON 12/12/99 11:22 AM

The more important difference is more technical. When mapping BON to Eiffel, aggregation relationships can be mappeskfmodeatype&ffectively,
that means that the supplier is not connected to the clienteferance
Bidirectional links

A set of client-supplier associations in each direction between two classes may be combined into a double link with ahatreawhesnd. Fig. 15 has an
example.

Figure 15: Bidirectional association links

shoppers | SETf._}

preferved_malt

SHOPPING_CENTER

A convention is needed to show which relation each label refers to. The rule is to put the label closer to the supplég sidepieferred_malis a feature in
CUSTOMERf typeSHOPPING_CENTERhile shopperss a feature itsHOPPING_CENTERf type CUSTOMER

Bidirectional links appear odd: two classes cannot be part of each other! But client relations are between classest empassshte for for clasa to have an
integral part of clasB, and vice versa, providing that different instances are involved. Think of any recursively defined data structures)égatreealogy.

By definition, bidirectionahggregatiorrelationships are not possible.
Client-supplier and clusters

Just like inheritance, the client-supplier relation can be generalized to apply to clusters. Fig. 16 shows an example.

file:///IBigBin/Course%20files/3311%20%20Soft%20Desgin/www.rich/Bon/bon.html Page 9 of 10

An Introduction to BON 12/12/99 11:22 AM

Figure 16: Client relations involving clusters

chatr, members: SETY ..}
referecs | SETF |

registranonn SETE. |

I REGISTRATION
attender

The ORGANIZATION:luster of a conference system is a client of8DATAcluster. The labels refer to features of classes in the client cluster, but we cannot tell
which class from the diagram. If the classes are important, then the diagram should be expanded to include such destaipli€liembws can cross cluster
boundaries (i.e., a class in one cluster can be client of a class in a second cluster).

Where To Learn More

There's more to BON than what we're able to show here. BON also features diagrams for descdiamagrticeharacteristics of object-oriented systems.
Dynamic characteristics are the ones that arise when a system is executing. For example, classes might use the rautlassed atftemay react to these
messages in interesting ways, or messages might be passed between objects. We haven't discussed these ideas heuogithefyfaneréheourses.

If you want to learn more about BON, you should looKlhapd B]. The former book has a concise description of BON and how it is used, but it is more a
textbook on object-oriented technologies in general. The latter book is a text on BON, and contains case studies ardrdptafed@u may use these books
in future courses.

To learn more about other object-oriented notations, like UML, OMT, or Objectory, look in the library, or talk to youomstruct

Bibliography
1 Meyer, B. (1997Dbject-oriented Software Constructiddecond Edition, Prentice-Hall.
2 Paige, R. and Ostroff, J. (1999) A Comparison of BON and UMPBrdée. UML'99 Lecture Notes in Computer Science, Springer-Verlag.
3 Walden, K., and Nerson, J.-M. (19%%amless Object-Oriented Software ArchitectBrentice-Hall.
.. typd
This is a simplification of what is going on behind-the-scenes, but for now, you can think of an object as possessingfitstarmames of its class
type.
.. diagram
BON convention is that class names are written in all capitals.
.. Clas8
Except theereation routines.
.. invariarg

In fact, Eiffel relaxes this last requirement slightly and allows private routines to temporarily invalidate the invariant.

file:///IBigBin/Course%20files/3311%20%20Soft%20Desgin/www.rich/Bon/bon.html Page 10 of 10

