Input and Output
in LISP

York University CSE 3401
Vida Movahedi

York University- CSE 3401- V. Movahedi 16_LISP_10

Overview

e Read and Print
e Escape characters in symbol names

e Strings & how to format them

e Filel/O

[ref.: Chap. 10 -Wilensky]

Read

e (read)

— Read can be used a function of no arguments
— |t reads one s-expression from the standard input

— And returns it.

> (setq x (read))

20 < input by user
20

> X

20

> (setq y (read))
(a b) € input by user
(A B)

York University- CSE 3401- V. Movahedi

>y
(A B)

> (setq z (cons ‘a (read))
(b c) € input by user
(A B C)

> 2

(A B C)

16_LISP_IO

Print

* (print arg)

— Print can be used a function with one argument
— The one argument must be an s-expression

— It prints to the standard output,
e Anew line
e Then its argument
 Then a single space

— Returns its argument

> (print ‘enter)

b < new line

ENTERL € single space PRINTED
ENTER RETURNED

York University- CSE 3401- V. Movahedi 16_LISP_ 10O

Print (cont.)

e Example:
> ((lambda () (print ‘enter) (setq x (read))))
- blank line
ENTER 10 - 10 entered by user
10 - 10 returned by the last form, (setq ...)

> (let () (print ‘enter) (print ‘a) (print ‘number) (setq x (read)))

- blank line
ENTER
A
NUMBER 20 - 20 entered by user
20 - 20 returned by the last form, (setq ...)

York University- CSE 3401- V. Movahedi 16_LISP_ 10O 5

Prinl, Terpri

e (prinl arg)
— Only prints its argument (no new lines or spaces)
— Returns its argument

e (terpri)
— Stands for “terminate print line”
— Prints a carriage return (new line)

— Returns NIL
Part of symbol’s name

> (prog () v

(prinl 'enter>)
(if (numberp (read)) (prinl 'ok) (prinl 'Nop!))

(terpri))
ENTER>11 Value returned by
OK terpri? No, prog returns
NIL - / NIL when done.

York University- CSE 3401- V. Movahedi 16_LISP_IO

Example (1)

> (loop

(print ‘number>)

(let ((in (read)))

(if (equal in ‘end) (return nil))
(print (sqrt in))))

b
NUMBER>525
b
56
NUMBER>:9
b
36
NUMBER>bend
NIL

York University- CSE 3401- V. Movahedi 16_LISP_ 10O

Example (2)

> (loop
(print ‘(A number please>))
(return (read)))

b
¥
(A NUMBER PLEASE>)520

Prints the parenthesis!

20

> (let ()
(mapc ‘prinl ‘(A number please>))

(read)) ~
ANUMBERPLEASE>10

No spaces!

10

York University- CSE 3401- V. Movahedi 16_LISP_IO

Escape characters

e Any way to add a space?! YES!

e Method 1: Add a space to symbol’s name

— \ (single escape character): allows the character following
it to escape the normal LISP interpretation

— | (multiple escape character): anything between a pair of
vertical bars escapes the normal LISP interpretation

(setg ab(c 10) - waits for the closing parenthesis
(setg ab\(c 10) - sets the value of the symbol ab(c

Escape characters (cont.)

> (setq |avar| 10)
10

> |a var|

10

> (setq |BigVar| 200)
200

> | BigVar|

200

> ‘BigVar
BIGVAR

> ‘| BigVar |
| BigVar|

York University- CSE 3401- V. Movahedi

16_LISP_IO

<\

Can have spaces in
symbol’s name

</

No changing to UPPER
CASE, if escape
characters used.

10

Example (3)

> (let ()
(mapc ‘prinl ‘(a |bnumbert | please\b>))
(read))
A|bnumbert | |[PLEASEL> | <\ Prints the escape

characters!!!
\ Note PLEASE is in UPPER

CASE, but number is not.

> (print ‘| Abnumberbpleaset>|)
b

| A number please >|

| A number please >|

York University- CSE 3401- V. Movahedi 16_LISP_IO

11

princ

* |sthere a way to print anything looking nice?! YES © Use
princ:
> (prog () (princ ‘| A number please> |) (read))

A number please> 100
NIL

* The return value of print and princ are the same, only the
printed output is different.

> (princ ‘| Abnumbertpleaset>|)
A number please >
| A number please > |

 Princ does NOT prints s-expression, but prints in human-
readable format. If what is being printed needs to be read or
used by LISP use print to print s-expressions

Strings

e Other data types, such as strings have been added to
LISP to increase functionality

e Astring is a sequence of characters enclosed in
double quotes, e.g. “Hello there!”

e Method 2: Use strings

> ((lambda () (princ “A number please: “) (read)))
A number please: 100
100

— We still need to use princ for not having the double quotes

Strings (cont.)

> “Hello there!”
“Hello there!”

> (print “Hi"”)

b Printed value &

o °))
Hi }e i Returned value
IIH i’)

> (princ “Hi”)

Hi
“Hi” } : N Printed value &

Returned value

York University- CSE 3401- V. Movahedi 16_LISP_IO

14

Strings (cont.)

A symbol’s name (also called print name) is a string.
> (symbol-name ‘x)
IIX”
> (symbol-name ‘BigVar)
“BIGVAR”
> (symbol-name ‘ab\(c)
IIAB(C”
> (symbol-name ‘| A Big Var|)
“A Big Var”

e Strings don’t have components (values, property lists,
etc), therefore require less storage space

Format

e (format destination string....)
— Destination:
e Nil: just return the formatted string
e T:to standard output
 Any other stream

— String (can contain directives)
~A or ~“nA Prints one argument as if by PRINC
~S or ~“nS Prints one argument as if by PRIN1
~D or ~nD Prints one argument as a decimal integer
~F or ~“nF Prints one argument as a float
~0,~B, ~X Prints one argument as an octal, binary, or hexidecimal
~% Does a TERPRI
where n is the width of the field in which the object is printed

Format (cont.)

> (setq n 32)

32

> (format t "N is ~d" n)
N is 32

NIL

> (format nil "N is ~d" n)
"N is 32“

> (format nil "N is ~5d" n)
“Nis 32"

> (format nil "N is ~10b" n)
“Nis 100000”

> (format nil "N is ~10,'0b" n)
“N is 0000100000”

> (format nil "N is ~:b" n)

“N is 100,000”

> (format nil "N is ~d~%" n)
"N is 32

> (format nil "N is ~7,2f" n)

“Nis 32.00”

> (format nil "Hi ~a" "Bob")

"Hi Bob“

> (format nil "Hi ~s" "Bob")

"Hi \"Bob\"“

> (format nil "Hi ~s" '|Bob|)
"Hi |Bob | “

> (format nil "Hi ~a" '|Bob|)
"Hi Bob"

Files

e Writing to files [Path and Filename as string

> (setq outstream (open “c:\\data.txt” :direction :output)
#<OUTPUT BUFFERED FILE-STREAM CHARACTER #P"C:\\data.txt">

> (print ‘(1 2 3) outstream)

(1 2 3) :keywords
> (close outstream) Opening for output
T

e Reading from files

> (setq instream (open “/usr/lisp/file.dat” :direction :input))
#<INPUT BUFFERED FILE-STREAM CHARACTER #P"C:\\lispcode\\file.txt" @1>

> (read instream)
(1 2 3)

> (close instream)
T

York University- CSE 3401- V. Movahedi 16_LISP_10O 18

Files (cont.)

 What happens when reaching end of file?

> (read instream)
Error - going beyond end of file!

> (read instream nil ‘eof)
EOF

>(read instream nil ‘oops)

'aYaYn I

UUFS

(read stream eof-error-p eof-value)
If eof-error-pis T,
generates error if eof reached.

If eof-error-p is NIL,
returns eof-value if eof reached.

York University- CSE 3401- V. Movahedi 16_LISP_IO

19

Files (cont.)

e Standard input and output

— When stream arguments are not supplied to read and
print, the standard streams are used.

— The standard streams are stored in *standard-input® and
*standard-output®.

* Princ can also be used for writing to files in human-
readable format. Not necessarily readable by read.

Dribble

e (dribble pathname)

Starts recording any interactions with the interpreter

e (dribble)

Stops recording

For example:

> (dribble “c:\\mydribble.txt”)

> (setg x 10)

10

>(setq y (cons ‘a x))

(A.10)

>(dribble) = The above interactions will be saved in the file.

Final notes

 Note that the top-level of LISP (the interpreter) is just

a loop that

— Reads from the standard input

— Evaluates

— Prints the returned value to the standard output
— Referred to as the read-eval-print loop

e LISP conatins many other built-in functions for
reading characters, reading lines, printing lists, etc
that we did not cover.

