Higher-order functions

York University CSE 3401
Vida Movahedi

York University- CSE 3401- V. Movahedi 15 HigherFunctions

Overview

Higher-order functions
Apply and funcall
Eval

Mapping functions: mapcar, mapc, maplist,mapl

[ref.: chap 8, 9 - Wilensky]

Almighty functions!

 Higher- order functions can accept functions as
inputs (and can return functions as outputs)

e |f we can write functions that work on functions, we
can have programs that can retrieve, create, and
execute programs

e For this purpose,
— We need to be able to accept functions as arguments
— We need to be able to apply functions to arguments

Example

e A function that adds up the first n integers: f(n) = Zi
(defun sum_to (n) -

(do ((i n (1- i) (sum O (+ sum i)))
((zerop i) sum)))

e A function that adds up the square roots of the first n

Integers
— Change to (sum 0 (+ sum (sqgrt i))))

e A function that adds up the squares, or cubes of the
first n integers ..., rewrite again?!

Easy?

e A function to add up results of application of another
function to the first n integers

f(g.m) =900

(defun sum_fun (func n)
(do ((i n (1- i)) (sum O (+ sum (func i))))
((zerop i) sum)))

The above code does not work. Why?

Value vs. function definition

e What does LISP do to evaluate a form such as
(func i) ?

— Assumes func is a function, looks at its function definition
— Applies the function definition to the actual argument
(value of i)

— When we pass the name of the function (e.g. sgrt) as the
argument of sum_fun, we set the value of func to sqrt, not
its function definition!

York University- CSE 3401- V. Movahedi 15_HigherFunctions 6

Apply

Apply applies its first argument as a function to its
second argument

Second argument must be a list of arguments for the
function

Examples

> (apply ‘+ ‘(1 2 3))

6

> (apply ‘cons ‘(1 (2 3)))
(1 2 3)

> (apply ‘car ‘((a b c)))
A

Back to our sum-fun example

e We can correct our previous code to:

> (defun sum_fun (func n)
(do ((i n (1- 1))
(sum O (+ sum (apply func (list i)))))
((zerop i) sum)))

> (sum_fun ‘sqrt 2)
2.4142137

> (defun squared (x) (* x x))
SQUARED

> (sum_fun ‘squared 2)
5

York University- CSE 3401- V. Movahedi 15_HigherFunctions

Using Lambda functions

e Using lambda functions makes it easy to have
temporary functions. For example, instead of
defining squared and then using it:

> (defun squared (x) (* x x))
SQUARED

> (sum_fun ‘squared 2)
5

We can write:
> (sum_fun (lambda (x) (* xx)) 2)
5

York University- CSE 3401- V. Movahedi 15_HigherFunctions

Funcall

 Funcall is similar to apply, different in just passing

arguments
— Second argument is the name of a function
— The rest are arguments to that function

> (apply ‘+ (1 2 3)) > (apply ‘car ‘((a b c)))
6 A

> (funcall + 12 3) > (funcall ‘car ‘(a b ¢))
6 A

> (apply ‘cons (a (b c))

(ABC)

> (funcall ‘cons ‘a ‘(b c))
(AB C)

Eval

e Eval evaluates its only argument
> (setqg x ‘(+ 1 2 3))
(+ 1 2 3)

> (eval x)
6

> (eval ‘(cons ‘a ‘(b c)))
(A B C)

 Note that, as usual, the argument will be evaluated
first and then eval will be applied to it.

> (eval (cons ‘a ‘(b c)))
Error! Undefined function Al

Example

> (setq vl ‘v2)
> (setq v2 ‘v3)

> vl

V2

> (eval v1)
V3

> (eval ‘v1)
V2

(eval (cons ‘+ ‘(1 2 3)))
6

York University- CSE 3401- V. Movahedi 15_HigherFunctions

12

eval vs. apply

e Can we write eval using apply?

(eval L) 2 (apply (carL) (cdr L))

e Works in some cases:

(setg x ‘(+ 1 2 3)) - (+ 1 2 3)
(eval x) > 6
(apply \(car x} ‘(cdr x)’) - 6

+ (123

York University- CSE 3401- V. Movahedi 15_HigherFunctions 13

eval vs. apply

 Does not always work!

— Apply does not work with special operators, such as setq

(setq x ‘(setq y 25)) - (SETQ Y 25)
(eval x) 2> 25
(apply (car x) (cdr x)) —2> Error! Setq is a special operator!

— Eval works with constants and variables too

(setq x 2) 2> 2
(eval x) 2> 2
(apply (car x) (cdr x)) - Error! 2 is not a list!

Example

e Defining our own if function using cond
> (setq n 10)
10
> (our-if (< n5) (+ n 2) ‘(- n 3))
7/

(defun our-if (test trueform falseform)
(cond (test (eval trueform))
(t (eval falseform))))

— Note that (< n 5) is evaluated to t or nil first, and then
passed on to our-if
— For above example, what does cond return in our-if?

Answer. The second cond clause will be evaluated,
returning 7 and therefore cond will return 7.

Example (cont.)

 We can also write the code this way (why?)

(defun our-if2 (test trueform falseform)
(eval (cond (test trueform)
(t falseform))))

e |f we evaluate the following, what does cond return in our-if2?

(setg n 10)
(our-if2 (< n5) (+ n 2) ‘(- n 3))

Answer. It returns (- n 3) to be evaluated by eval.

Context problems with eval

e Context in which forms are evaluated

> (defun our-if3 (test trueform falseform)
(setg n 100)
(cond (test (eval trueform))
(t (eval falseform))))

> (setq n 10)
> (our-if3 (< n5) ‘(+ n 2) ‘(- n 3))

97 | |

10 100

Be careful in which context the forms are evaluated!

Exercise: What if we use let instead of setq in definition of our-if3?
York University- CSE 3401- V. Movahedi 15_HigherFunctions 17

Mapping functions

e Mapping functions apply a function to multiple inputs.
— Apply applies a function to one input (that may be a list).

e Example:

> (mapcar ‘1+ ‘(10 20 30 40))

(11 21 31 41)

> (mapcar ‘atom ‘(x (a b) c nil 10))
(T NIL T TT)

> (mapcar ‘+ ‘(10 20 30) ‘(1 2 3))
(11 22 33)

Mapcar, mapcC

e Mapcar

— Evaluates all its arguments

— Starts with a nil result (an empty list)

— Until the arguments are empty, loops
e Applies its first argument to the cars of each latter

argument

e conses result with the result of above application
e cdrs down the argument lists

— Returns result

* Mapc

— Just like mapcar, except it does not construct result
— Less computation since no consing
— Returns its second argument

Example

e Assume we want to set coordinates x and y of four
points pl to p4.
P1(0,0) P2(1,2) P3(4,-1) P4(2,3)

— Assume we are using properties x and y for symbols p1 to
p4 to store the coordinates

(setf (get p1 ‘x) 0)
(setf (get pl1 ‘y) 0)
(setf (get p2 ‘x) 1)...

— |t is more convenient to define a function such as:
(defun setC (point xval yval)

(setf (get point ‘x) xval)

(setf (get point ‘y) yval))

Example (cont.)

* Now we can use mapcar:

> (mapcar ‘setC ‘(pl p2 p3 p4) Mapcar returns a list
‘C 1 4 2) of all values
0 2 -1 0)) returned by setC
e What does mapcar return? (which is the value

(0 2 -1 0)

(’/ returned by the last form

in setC)

e We don’t need the return value, so it’s better to use mapc:

> (mapc ‘setC
(P1 P2 P3 P4

York University- CSE 3401- V. Movahedi

‘(1 p2 p3 p4) (01 4 2) (0 2 -1 0))
) E ~— Mapc returns its

second argument.

15_HigherFunctions 21

maplist, mapl

e Similar to mapcar and mapc
 Apply function to successive cdrs instead of cars

e Example:

> (maplist ‘append ‘(a) ‘(x))
((A X))

> (maplist ‘append ‘(a b) ‘(x vy))

(A B XY) (BY)) Exercise:
Substitute append
with cons or list,

> (maplist ‘append ‘(a b ¢) ‘(x y 2)) and see what

(ABCXYZ) (BCY Z) (C?Z2) maplist returns.

Lambda notation again!

 Lambda abstractions can also be used with mapping
functions:

> (mapcar (lambda (x) (* x 2)) (10 20 30))
(20 40 60)

> (mapcar (lambda (x) (cons ‘a x)) ‘((xy z) (1 2 3) (nil (b) c)))
(AXYZ)(A123)(ANIL(B) Q)

> (mapcar (lambda (xy) (+ (* 10 x) y)) (1 5 7)'(4 6 8))
(14 56 78)

York University- CSE 3401- V. Movahedi 15_HigherFunctions 23

