Introduction to
LISP

York University CSE 3401
Vida Movahedi

York University- CSE 3401- V. Movahedi 11 LISP



Overview

e |ntroduction to LISP
e Evaluation and arguments

* S- expressions
— Lists
— Numbers
— Symbols

e setq, quote, set

e List processing functions
— car, cdr, cons, list, append

[ref.: Wilensky, Chap1-2]




LISP vs. Prolog

 Prolog
— Logic Programming
— Based on Predicate Logic
— Working with predicates
— Computation is reasoning, initiated by a query
— Popular in natural language processing
— More research on/with Prolog in University of Edinburgh

 LISP

— Functional Programming

— Based on Lambda Calculus

— Working with functions

— Computation is evaluation

— Used in Artificial Intelligence

— More research on/with LISP in MIT




LISP

Designhed by John McCarthy in 1958 in MIT

Second-oldest high-level programming language (after
Fortran) [Wikipedia]

Popular dialects: Common LISP, Scheme

— We use Common Lisp (www.clisp.org)
— Execute the command clisp, execute (exit) to exit (or ctrl + D)

Theory based on Lambda Calculus by Alonzo Church
(1930)

— A-calculus: theory of functions as formulas
— Easier manipulation of functions using expressions




LISP

e LISP: acronym for LISt Processing

 Primary data structure:
— Symbolic expression (s-expression):
e Lists
* Atoms

e LISP interpreter: waiting for input to be evaluated

e Example:
> (+2 3)
5




Evaluation

(+ 2 3)

— Alist is an s-expression, defined by a pair of parentheses
— First element is assumed to be a function

— The rest are arguments to the function

— Arguments are evaluated as s-expressions themselves

Example:
> (+2(* 34))
14

LISP evaluation rule:

Look at the outermost list first. Evaluate each of its arguments. Use
the results as arguments to the outermost function.




Evaluation (cont.)

e LISP evaluates everything!
— Even when the arguments are simple numbers, they are
evaluated!
— Numbers evaluate to themselves
> 8
8
— Avalue is returned from the evaluation of an expression

e Nested Lists
> (+ (* 8 9) (- 8 10))
70

e Joke: LISP is acronym for “Lots of Irritating Single Parentheses”




Arguments

e Number of arguments
— Supply the correct number of arguments
> (1+ 5)
6
— Otherwise error! It enters debugger, use quit or Ctrl+D to
exit debugger
— + is defined to allow more than 2 arguments
>(+1 2 3)
6

 Supplied arguments vs. actual arguments
>(+2(*34))
Supplied args: 2 and (* 3 4)
Actual args: 2 and 12




Symbols

 Symbols can serve the role of variables

e Can be assigned values:

> (setq x 8)
8
> X <«

LISP is not case-sensitive!

8

~] Symbols evaluate to the last

value assigned to them

 Note setq is a special function,
— First argument is not evaluated
— Second argument is evaluated and assigned to first

argument

— The value is returned

York University- CSE 3401- V. Movahedi

11 _LISP



Symbols (cont.)

 Symbols can also serve the role of function

identifiers

— For example +, 1+, setq are all symbols

e Can have both
> (setq 1+ 5)
5
> (1+7)
8
> 1+
5

York University- CSE 3401- V. Movahedi

roles simultaneously!

11 _LISP

10




S-expressions

J

l Lists

York University- CSE 3401- V. Movahedi

l Symbols

11_LISP

11




More on numbers

Integers: 1, 10, ...

Ratios: 1/2, 2/3, ...
—>(+1/21/3)
— 5/6

Floating point numbers: 1.2, 0.25, 3.33E23

— Can specify precision by using S, F, D, L for short, single,
double, long precision respectively instead of E

— For example 1.2D10, 2S0

Arithmetic functions on page 429, 434- Wilensky




Lists

e Use parentheses to denote lists in LISP, no commas
—e.g.(abc)

>(setq x (a b c))
Error: Undefined function Al

— Evaluation of lists: first element is assumed to be a
function

e Use gquote (short form is ‘) to prevent evaluation
> (setg x ‘(a b c))
(ABC)

> (setg x (quote (a b c))) (same as previous)
(ABC)




Set

e setqis actually set quote
> (setqg x 5) is same as > (set ‘x 5)
— Reminder: setq does not evaluate its first argument

e More examples:
> (set ‘x (+ 2 3))
5
> X
5

> (set ‘x ‘(+ 2 3))
(+ 2 3)

> X

(+ 2 3)




Values are S-expressions

e Assigning a value that is itself a symbol

> (setq x ‘y)
Y

> X
Y

> (set x (+ 2 3))

5
> X
Y

>y
5

York University- CSE 3401- V. Movahedi

11 _LISP

Supplied arguments:

X and (+2 3)
Actual arguments:
y and 5

15




Lists as binary trees

e Alistis actually a binary tree, consisting of the head

and the tail

List notation vs. dot notation

List notation
(a)

(a b)

(abc)
((ab)c)

N/A

York University- CSE 3401- V. Movahedi

Dot notation

(a.()) or(a.nil)

(a. (b.nil))
(a.(b.(c.nil)))
((a.(b.nil).(c.nil))
(a.Db)

11 _LISP

Nil is a constant.
Its value can not be
changed.

Numbers and
guoted expressions
are also constants.

16




Lists as binary trees

Yo

(abc)is(a.(b.(c.())))

rk University- CSE 3401- V. Movahedi 11 LISP

17




Heads and Tails

e car: returns the first element of the list (head)
— Originating from a CPU instruction: Copy Address Register

e cdr: returns the list with first element missing (tail)
— Originating from : Copy Decrement Register

e Examples:
> (car ‘(a b c))
A
> (cdr ‘(a b c))
(B C)
> (car (cdr (car ‘((a b)) ) ))
B




More predefined functions

e cadr = car (cdr
e cadar = car (cdr (car
e cddaar, cadadr, ...

e Examples:
> (cadr‘(abc))
B

> (cadar ‘((a b c)) )
B

York University- CSE 3401- V. Movahedi 11 LISP

19




Cons

Construct a list using its head and tail
— second argument must be a list

> (cons ‘a‘(bc))

(A B C)

> (cons ‘(ab) ‘(cd))

((AB) CD)

Somehow an inverse for car and cdr pair
> (setgx ‘(abc))
(ABC)
> (cons (car x) (cdr x) )
(ABC)

Cons is expensive, due to memory allocation and garbage
collection




More list construction functions

e List: constructs a list of its arguments
— any number of arguments
> (list ‘a ‘b ‘c)
(A B C)
> (list(12)(34))
((12) (3 4))

 Append: constructs a list by appending its arguments
— Any number of arguments
— Arguments must be lists

> (append ‘(a) ‘(b) “(c))
(ABC)

> (append (1 2) (3 4))
(1234)

York University- CSE 3401- V. Movahedi 11 LISP

21




Examples

e Use car and cdr to return x when applied to

(a (b (xd)))

(cdr “(a (b (x d)))) =2 ((b (x d)))
(car (cdr ‘(a (b (xd))))) -2 (b (x d))
(car (cdr (car (cdr ‘(a (b (x d))) )))) -2 (x d)

(car (car (cdr (car (cdr ‘(a (b (x d)))))))) —=x

e What is the difference between these expressions?
(car (setgx ‘(abc))) > A
(car ‘(setqx ‘(abc))) - SETQ




