Introduction to Lambda Calculus

York University CSE 3401 Vida Movahedi

Overview

- Functions
- λ -calculus : λ -notation for functions
- Free and bound variables
- α equivalence and β -reduction
- Connection to LISP

[ref.: Chap. 1 & 2 of Selinger's lecture notes on Lambda Calculus: http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf] [also Wikipedia on Lambda calculus] [I am using George Tourlakis' notations for renaming and substitution]

Extensional view of Functions

- "Functions as graphs":
 - each function f has a fixed domain X and co-domain Y
 - a function $f: X \rightarrow Y$ is a set of pairs $f \subseteq X \times Y$ such that for each $x \in X$, there exists exactly one $y \in Y$ such that $(x, y) \in f$.
- Equality of functions:
 - Two functions are equal if given the same input they yield the same output

$$f,g:X \to Y, \quad f=g \Leftrightarrow \forall x \in X, f(x)=g(x)$$

Intensional view of Functions

- "Functions as rules":
 - Functions defined as rules, e.g. $f(x) = x^2$
 - Not always necessary to specify domain and co-domain
- Equality of functions:
 - Two functions are equal if they are defined by (essentially)
 the same formula
- Comparing the two views
 - Graph model is more general, does not need a formula
 - Rule model is more interesting for computer scientists (How can it be calculated? What is the time/memory complexity? etc)

3 observations about functions

- f(x)=x is the identity function g(x)=x is also the identity function
 - → Functions do not need to be explicitly named
 - \rightarrow Can be expressed as $x \mapsto x$

$$(x, y) \mapsto x - y$$

 $(u, v) \mapsto u - v$ they are the same

→ The specific choice for argument names is irrelevant

$$(x, y) \mapsto x - y$$

 $x \mapsto (y \mapsto x - y)$

→ Functions can be re-written in a way to accept only one single input (called <u>currying</u>)

Lambda Calculus

- These 3 observations are motivations for a new notation for functions: Lambda notation
- λ -calculus: theory of functions as formulas
- Easier manipulation of functions using expressions
- Examples of λ -notation:
 - The identity function f(x)=x is denoted as $\lambda x.x$
 - $-\lambda x.x$ is the same as $\lambda y.y$ (called α -equivalence)
 - Function f defined as $f: x \mapsto x^2$ is written as $\lambda x.x^2$
 - f(5) is $(\lambda x.x^2)(5)$ and evaluates to 25 (called β-reduction)

More examples

Evaluate

$$(\lambda x.((\lambda y.x^2 + y^3)(2))(3)$$

$$= (\lambda x.x^2 + 2^3)(3) = (3^2 + 2^3) = 17$$

Evaluate

$$(\lambda x.(\lambda y.x^2 + y^3))(2)(3)$$
$$= (\lambda y.2^2 + y^3)(3) = (2^2 + 3^3) = 31$$

Higher order functions

- Higher-order functions are functions whose input and/or output are functions
- They can also be expressed in λ -notation
- Example:
 - $-f(x)=x^3$ and $g(x)=(f\circ f)(x)=f^{(2)}(x)=f(f(x))=f(x^3)=(x^3)^3=x^9$
 - f(x) is written as $\lambda x.x^3$
 - -g(x)=f(f(x)) is written as $\lambda x.f(f(x))$
 - The function defined as $f \mapsto f \circ f$ is denoted as $\lambda f. \lambda x. f(f(x))$

Lambda terms

- λ -term calculation:
 - 1. A *variable* is a λ -term (for example x, y, ...)
 - 2. If M is a λ -term and x is a variable, then $(\lambda x.M)$ is a λ -term (called a **lambda abstraction**)
 - 3. If M and N are λ -terms, then (MN) is a λ -term (called an application)
 - Note in λ -notation we write (fx) instead of f(x)

Example: Write the steps in λ -term calculation of

$$(\lambda x.(\lambda y.(\lambda z.((xz)(yz)))))$$

$$x, y, z, (xz), (yz), ((xz)(yz)), (\lambda z.((xz)(yz))), (\lambda y.(\lambda z.((xz)(yz)))), (\lambda x.(\lambda y.(\lambda z.((xz)(yz)))))$$

Conventions

- Conventions for removing parentheses:
 - 1. Omit outermost parentheses, e.g. MN instead of (MN)
 - Applications are left-associative, omit parentheses when not necessary, e.g. MNP means (MN)P
 - 3. Body of <u>abstraction</u> extends to right as far as possible, e.g. $\lambda x.MN$ means $\lambda x.(MN)$
 - 4. Nested abstractions can be contracted, e.g. $\lambda xy.M$ means $\lambda x.\lambda y.M$

Ex: Write the following with as few parentheses as possible:

$$(\lambda x.(\lambda y.(\lambda z.((xz)(yz))))) \Rightarrow \lambda xyz.xz(yz)$$

Free and bound variables

- In the term $\lambda x.M$
 - $-\lambda$ is said to bind x in M
 - $-\lambda x$ is called a binder
 - x is a bound variable
- In the term $\lambda x.xy$
 - x is a bound variable
 - y is a free variable
- In the term $(\lambda x.xy)(\lambda y.yz)$
 - x is a bound variable
 - z is a free variable
 - y has a free and a bound occurrence
 - Set of free variables FV={y,z}

Set of free variables

FV(M): the set of free variables of a term M

$$-FV(x) = \{x\},$$

$$-FV(\lambda x.M) = FV(M) - \{x\}$$

$$-FV(MN) = FV(M) \cup FV(N),$$

Set of free variables in term M defined as

$$\lambda xy.((\lambda z.\lambda v.z(zv))(xy)(zu))$$

is:
$$FV(M) = FV((\lambda z.\lambda v.z(zv))(xy)(zu)) - \{x, y\}$$
$$= (FV(\lambda z.\lambda v.z(zv)) \cup FV(xy) \cup FV(zu)) - \{x, y\}$$
$$= ((\{z, v\} - \{z, v\}) \cup \{x, y\} \cup \{z, u\}) - \{x, y\}$$
$$= \{z, u\}$$

α- equivalence

- $\lambda x.x$ is the same as $\lambda y.y$ (both are identity function)
- $\lambda x.x^2$ is the same as $\lambda z.z^2$
- Renaming bound variables does not change the abstraction
- This is called α -equivalence of lambda terms and is denoted as

$$\lambda x.M =_{\alpha} \lambda y.(M\{x \setminus y\})$$

- Where $M\{x \mid y\}$ denotes <u>renaming</u> every occurrence of x in M to y (assuming y does not already occur in M)
 - Note x is a bound variable in this definition

Substitution

 Substitution is defined for free variables, substituting a variable with a term.

```
- (\lambda x.xy)[y := M] = \lambda x.xM
- - (\lambda x.xy)[y := (uv)] = \lambda x.x(uv)
```

Substitution must be defined to avoid capture

```
- (\lambda x.xy)[y := x] \neq \lambda x.xx
- (\lambda x.xy)[y := x] = (\lambda x'.x'y)[y := x] = \lambda x'.x'x
```

$$- (\lambda x.yx)[y := (\lambda z.xz)] \neq \lambda x.(\lambda z.xz)x$$

$$- (\lambda x.yx)[y := (\lambda z.xz)] = \lambda x'.(\lambda z.xz)x'$$

Substitution (cont.)

• Definition:

$$x[x := N] \equiv N$$

$$y[x := N] \equiv y \qquad \text{if } x \neq y$$

$$(MP)[x := N] \equiv (M[x := N])(P[x := N])$$

$$(\lambda x.M)[x := N] \equiv \lambda x.M$$

$$(\lambda y.M)[x := N] \equiv \lambda y.(M[x := N]) \qquad \text{if } x \neq y \text{ and } y \notin FV(N)$$

$$(\lambda y.M)[x := N] \equiv \lambda y.(M[x := N]) \qquad \text{if } x \neq y, y \in FV(N), \text{ and } y' \text{ fresh}$$

Capture case!

Bound variable y is **renamed** to y' to avoid capture of free variable y in N

β-reduction

 β-reduction: the process of evaluating a lambda term by giving value to arguments

For example:

- $(\lambda x. \dot{x^2})(5) \rightarrow_{\beta} 25$ $(\lambda x. y)(z) \rightarrow_{\beta} y$

Definition

- β-redex: A term of the form $(\lambda x.M)N$ (a lamda abstraction applied to another term)
- It reduces to M[x:=N]
- The result is called a reduct
- β -reduction is applied recursively until there is no more redexes left to reduce
- A lambda term without any β -redexes is said to be in β normal form

β-reduction – more examples

•
$$(\lambda x.y)(\lambda z.zz)$$

$$\rightarrow_{\beta}$$
 y[x:=(λ z.zz)] = y

$$\rightarrow_{\beta}$$
 $y[x:=(\lambda z.zz)] = y$

$$\rightarrow_{\beta}$$
 w[w:=(λ w.w)] = (λ w.w)

• $(\lambda x.y)((\lambda z.zz)(\lambda w.w))$

$$\Rightarrow_{\beta} (\lambda x.y) (zz [z:=(\lambda w.w)]) \Rightarrow_{\beta} (\lambda x.y) ((\lambda w.w) (\lambda w.w))$$

$$\Rightarrow_{\beta} (\lambda x.y) (\lambda w.w) \Rightarrow_{\beta} (y [x:=(\lambda w.w)]) \Rightarrow_{\beta} y$$

• Or $(\lambda x.y)((\lambda z.zz)(\lambda w.w))$

$$\rightarrow_{\beta}$$
 y [x:= ((λ z.zz)(λ w.w))] \rightarrow_{β} y

Why Lambda Calculus?!

Popular question in 1930's:

"What does it mean for a function f to be computable?"

- Intuitive computability: A pencil-and-paper method to allow a trained person to calculate f(n) for any given n?
- Turing: A function is computable if and only if it can be computed by the Turing machine.
- Gödel: A function is computable if and only if it is general recursive.
- Church: A function is computable if it can be written as a lambda term.
- It has been proven that all three models are equivalent.
- Are they equivalent to 'intuitive computability'? Cannot be answered!

Lambda Calculus as a Programming Language

Lambda calculus

- It can be used to encode programs AND data, such as Booleans and natural numbers
- It is the simplest possible programming language that is Turing complete
- 'Pure LISP' is equivalent to Lambda Calculus
- 'LISP' is Lambda calculus, plus some additional features such as data types, input/output, etc