Introduction to
Lambda Calculus

York University CSE 3401
Vida Movahedi

York University- CSE 3401- V. Movahedi 10_LambdaCalculus

Overview

* Functions

* J-calculus : A-notation for functions
* Free and bound variables

e o- equivalence and [3-reduction

e Connection to LISP

[ref.: Chap. 1 & 2 of Selinger’s lecture notes on Lambda Calculus:
http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf]

[also Wikipedia on Lambda calculus]
[l am using George Tourlakis’ notations for renaming and substitution]

Extensional view of Functions

e “Functions as graphs”:

— each function f has a fixed domain X and co-domain Y
— a function f: XY is a set of pairs f X x Y such that for
each x € X, there exists exactly one y € Y such that

(x,y) F. f

e Equality of functions:
— Two functions are equal if given the
same input they yield the same output

f,ge: X >Y, f=gcvxeX,f(X)=9(x)

York University- CSE 3401- V. Movahedi 10_LambdaCalculus 3

Intensional view of Functions

e “Functions as rules”:
— Functions defined as rules, e.g. f(x)= x?
— Not always necessary to specify domain and co-domain

e Equality of functions:
— Two functions are equal if they are defined by (essentially)
the same formula

e Comparing the two views
— Graph model is more general, does not need a formula
— Rule model is more interesting for computer scientists
(How can it be calculated? What is the time/memory
complexity? etc)

3 observations about functions

f(x)=x is the identity function
g(x)=xis also the identity function

=>» Functions do not need to be explicitly named
=»Can be expressed as X > X

(Xa y) = X— y
(U,V) > U —V they are the same

=» The specific choice for argument names is irrelevant
(X9 y) => X=Y
X (Y x-y)

=» Functions can be re-written in a way to accept only one
single input (called currying)

York University- CSE 3401- V. Movahedi 10_LambdaCalculus

Lambda Calculus

These 3 observations are motivations for a new
notation for functions: Lambda notation

A-calculus: theory of functions as formulas
Easier manipulation of functions using expressions

Examples of A-notation:
— The identity function f(x)=x is denoted as Ax.x

— Ax.x is the same as Ay.y (called o-equivalence)
— Function fdefined as f : X X* is written as Ax.x?

— f(5) is (Ax.x?)(5) and evaluates to 25 (called B-reduction)

More examples

e Evaluate

(x((y.x* + y)H@))3)
= (axx? +2°)3) =37 +2°)=17

e Evaluate
(x.(Ay.x2 +y)Hk2)(3)
—(1y.22+y?)3) = (22 +3%)=31

York University- CSE 3401- V. Movahedi 10_LambdaCalculus

Higher order functions

 Higher-order functions are functions whose input
and/or output are functions

 They can also be expressed in A-notation

e Example:
— f(x)= 3 and g(x)=(f o f)(x)= FAX)=F(F(x))=f()=(*)P=x°
— f(x) is written as Ax.x3
— g(x)=f(f(x)) is written as Ax.f(f(x))

— The function defined as f> fof
is denoted as Af. Ax.f(f(x))

Lambda terms

e J-term calculation:
1. Avariable is a A-term (for example x, v, ...)
2. IfMisa A-term and x is a variable, then (Ax.M) is a A-
term (called a lambda abstraction)
3. IfMandN are A-terms, then (MN) is a A-term (called an
application)

— Note in A-notation we write (fx) instead of f(x)
Example: Write the steps in A-term calculation of
(Ax(2y.(22((x2)(y2))))
Y,z (). (y2), ()(y2), (2z((2)(y2)))
Ay (2z((xa)(y2))) - (x(2y(Az((x2)(y2))))

Conventions

 Conventions for removing parentheses:

Omit outermost parentheses, e.g. MN instead of (MN)

2. Applications are left-associative, omit parentheses when
not necessary, e.g. MNP means (MN)P

3. Body of abstraction extends to right as far as possible,
e.g. AX.MN means Ax.(MN)

4. Nested abstractions can be contracted, e.g. Axy.M means
AX.AY.M

Ex: Write the following with as few parentheses as possible:

(Ax(Ay(Az((x2)(y2))))) = Axyz.xz(yz)

Free and bound variables

* Inthe term Ax.M
— Aissaid to bind xin M
— Axis called a binder
— x is a bound variable

° Inthe term Ax.xy
— X is a bound variable
— yis a free variable

* Inthe term (Ax.xy)(Ay.yz)
— X is a bound variable
— zis a free variable
— y has a free and a bound occurrence
— Set of free variables FV={y,z}

York University- CSE 3401- V. Movahedi 10_LambdaCalculus

11

Set of free variables

e FV(M): the set of free variables of a term M

— FV(x) = {x},
— FV(Ax.M) = FV(M) - {x}
— FV(MN) = FV(M)U FV(N),

e Set of free variables in term M defined as
Axy ((Az.2v.2(zv) X xy)(zu))
is FV (M) = FV((Az.Av.z(zv) ((xy)(zu))—{X, Y}
= (FV (Az.Av.z(zv)) U FV (xy) U FV (zu))— {x, y}
= (({z.vi = {z.v)U %, v Ufz,up) - {x, v}
=1{Z,U}

o- equivalence

Ax.x is the same as Ay.y (both are identity function)
Ax.x? is the same as Az.2?

Renaming bound variables does not change the
abstraction

This is called a-equivalence of lambda terms and is
denoted as

XM =, ly.(M{x\y})

Where M{x\y} denotes renaming every occurrence of x in

M to y (assuming y does not already occur in M)
— Note x is a bound variable in this definition

Substitution

e Substitution is defined for free variables, substituting
a variable with a term.
— (Ax.xy)[y := M] = x.xM
— (Ax.xy)ly :=(uv)] = Ax.x(uv)

e Substitution must be defined to avoid capture
— (Ax.xy)[y = X] + AXXX
— (Ax.xy)[y := X] = (AXXy)ly :=x] = AX"x'x

— (Axyx)ly := (Az.xz)] # Ax.(Az.xz)x
— (Ax.yx)ly := (Az.xz)] = Ax’.(Az.xz)x’

Substitution (cont.)

e Definition:

X[X:=N] =N

y[X:= N] =Yy ifX=Yy

(MP)[x:=N] =(M[x:=N](P[x:=N])

(AX.M)[x=N] =AxXM

(AY.M)[x=N] =Ay.(M[x:=N])) if Xx=yandygFV(N)
(AYM)[x=N] =AYy (M{y\y'}[x=N]) ifx=y,ye FV(N),andYy'fresh

Capture case!
Bound variable y is renamed to y’ to
avoid capture of free variabley in N

York University- CSE 3401- V. Movahedi 10_LambdaCalculus 15

B-reduction

B-reduction: the process of evaluating a lambda term by

giving value to arguments

For example:
— (Ax.x?)(5) 2 25
- (Axy)(2) 9[3 y

Definition

— PB-redex: A term of the form (Ax.M)N (a lamda abstraction
applied to another term)

— It reduces to M[x:=N]
— The resultis called a reduct

— [B-reduction is applied recursively until there is no more
redexes left to reduce

— Alambda term without any [3-redexes is said to be in (3-
normal form

B-reduction — more examples

o (AX.y)(Az.zz) 25 yIxi=(hzzz)] =y
o (Ax.y)(Aw.w) 25 ylx=(Azzz)] =y
o (Aw.w)(Aw.w) 25 ww:=(Aw.w)] = (Aw.w)

o (Ax.y)((Az.zz)(Aw.w))

9[3 (Ax.y) (Aw.w) %B (y [x:= (Aw.w)]) 93 y

e Or (Ax.y)((Az.zz)(Aw.w))
95 v [x:= ((Az.zz)(Aw.w))] 93 y

York University- CSE 3401- V. Movahedi 10_LambdaCalculus 17

Why Lambda Calculus?!

Popular question in 1930’s:

“What does it mean for a function f to be computable?”

— Intuitive computability: A pencil-and-paper method to allow a
trained person to calculate f(n) for any given n?

1. Turing: A function is computable if and only if it can be
computed by the Turing machine.

2. Godel: A function is computable if and only if it is general
recursive.

3. Church: A function is computable if it can be written as a
lambda term.

It has been proven that all three models are equivalent.

 Arethey equivalent to ‘intuitive computability’? Cannot
be answered!

Lambda Calculus as a
Programming Language

e Lambda calculus

— |t can be used to encode programs AND data, such as
Booleans and natural numbers

— |t is the simplest possible programming language that is
Turing complete

— ‘Pure LISP’ is equivalent to Lambda Calculus

— ‘LISP” is Lambda calculus, plus some additional features
such as data types, input/output, etc

York University- CSE 3401- V. Movahedi 10 _LambdaCalculus 19

