Cut, Not, and Fail

York University CSE 3401
Vida Movahedi

York University- CSE 3401- V. Movahedi 07_CutNotFail

Overview

 Multiple solutions

e (Cut

— Examples
— 3 reasons to use

e Not
e Fail
 Problems with using Cut

[ref.: Clocksin- Chap. 4]
[also Prof. Gunnar Gotshalks’ slides]

York University- CSE 3401- V. Movahedi 07_CutNotFail

Multiple Solutions

e G@Given a set of facts, e.g.
father(mary, george).
father(john, george).
father(sue, harry).
father(george, edward).

A query such as :- father(X,Y). can generate multiple solutions

(if user prompts with a semicolon):
X= mary, Y= george;
X=john, Y= george,;
X=sue, Y=harry;
X= george, Y= edward

e And a query such as :- father(_,X). generates:
X= george;
X= george;
X= harry;
X= edward

York University- CSE 3401- V. Movahedi 07_CutNotFail

Multiple Solutions (cont.)

e Example:
is_integer(0).
is_integer(X):- is_integer(Y), X is Y+1.

The query :-is_integer(X). will get infinite number of integers:
X=0;

X=1;

X=2; = backtracking will go on forever!

e Example:
:-member(a, [a,b,a,a,b]).
true;
true;
true;
false. > Only need to succeed once, waste of time!

* |n some cases, we need to have control over backtracking!

York University- CSE 3401- V. Movahedi 07_CutNotFail

Library Example

* Allow access to basic facilities to clients with overdue
books, otherwise allow access to general facilities:

facility(Pers, Fac):- book_overdue(Pers, Book), basic_facility(Fac).
facility(Pers, Fac):- general_facility(Fac).

client(‘A. Jones’).

book _overdue(‘A. Jones’, book100).

book_overdue(‘A. Jones’, book200).

basic_facility(enquiries).

general_facility(borrowing).

 Go through all clients and find the facilities open to
them:
- client(X), facility(X,Y).

Library Example (cont.)

e The query will be answered:

X=‘A. Jones’, Y= enquiries;
X=‘A. Jones’, Y= enquiries;
since A. Jones had two overdue books
X=‘A. Jones’, Y= borrowing
certainly not what we want!
Resolving with the second rule!

 Another example for the need to control
backtracking!

York University- CSE 3401- V. Movahedi 07_CutNotFail

Search tree of Library Example

.- client(X), facility(X, Y).

‘ C3, [X/'A. Jones']

:- facility('A. Jones', Y).

C1, [Pers/'A. Jones', y Q‘ﬂ

.- book_overdue('A. Jones', Book), :- general_facility(Y).
basic_facility(Y).

C4, [Book/ by c5, [Book/book200] ‘ C7, [Y/borrowing]
O

:-basic_facility(Y). :-basic_facility(Y). X='A. Jones', Y=borrowing
Cé6, [Y/enquiries] ‘ ‘ Cé6, [Y/enquiries]
O O
X="A. Jones', Y=enquiries X="A. Jones', Y=enquiries

York University- CSE 3401- V. Movahedi 07_CutNotFail 7

CUT!

 Changing the code as follows solves this problem:

facility(Pers, Fac):- book_overdue(Pers, Book)] -
facility(Pers, Fac):- general_facility(Fac).
client(‘A. Jones’). |
book_overdue(‘A. Jones’, book100). ' always SUCCIeEdS
book_overdue(‘A. Jones’, book200). 3% 4809
basic_facility(enquiries).

general_facility(borrowing).

e Cut tells Prolog:

— If you got this far, don’t try resolving with the second rule for facility.
— If you got this far, commit to values you have, for example for Book

What does ! mean?

o Effect of cut in this example:
“If a client is found to have an overdue book, then only
allow the client the basic facilities of the library. Don’t
bother going through all the client’s overdue books, and
don’t consider any other rule about facilities.” [Clocksin]

e Formally:
“When a cut is encountered as a goal, the system
thereupon becomes committed to all choices made since
the parent goal was invoked. All other alternatives are
discarded. Hence an attempt to re-satisfy any goal
between the parent goal and the cut goal will fail.”
[Clocksin]

New Search tree of Library Example

:- client(X), facility(X, Y).

C3, [X/'A. Jones']

o :- facility('A. Jones', Y).

C1, [Pers/'A. Jones', Fac/Y]

:- book_overdue('A. Jones', Book), !, basic_facility(Y).

c4, [Book/ book100] ‘

:-basic_facility(Y).
Cé, [Y/enquiries] ‘

X="A. Jones’, Y=enquiries 07_CutNotFail

10

3 reasons to use cut !

1. Confirming the choice of a rule
“if you get to here, you have picked the correct rule for this
goal.” Don't try any other!

2. The cut-fail combination
“if you get to here, you should stop trying to satisfy this goa
Return false.

IH

3. Terminating generation of multiple solutions
“If you get to here, you have found the only solution to this
problem.” Don’t try to find alternatives.

Notes

 The cut always has only one meaning to Prolog
— Instruction about where to and not to backtrack
— The 3 mentioned, are just to make it easy to apply cut.

e foo:-a,b,c !, d ef
— Can backtrack among goals a,b, ¢
— Success of ¢ causes the “fence” to be crossed
— Can backtrack amongd, e, f
— |If d fails, no attempt to re-satisfy c, foo will also fail.

Confirming the choice of a rule

e Example:
sum_to(1,1):- .
sum_to(N, R):- N1isN-1,
sum_to(N1, R1),
Ris R1 + N.

What will happen if we don’t have ! and enter ; for this query:
.- sum_to(1, R).

With |, the second rule will only be used for numbers not
equal to 1.

An alternative form:
sum_to(N, 1):- N=<1,!.
sum_to(N, R):- N1isN-1,
sum_to(N1, R1),
Ris R1 + N.

York University- CSE 3401- V. Movahedi 07_CutNotFail 13

NOT

 An alternative way:

sum_to(N, 1):- N=<1.
sum_to(N, R):- \+(N =< 1),

— Good programming style to use \+ instead of !, since easier

N1isN-1,
sum_to(N1, R1),
Ris R1 + N.
e Not (\+):
to read
— Not always feasible:
a:-b,c. V.
a :- \+b, d.

(satisfying b twice)

a:-b, ! c
a :-d.
(satisfying b once—> faster)

Confirming the choice of a rule

e Example: Intersection of Aand B

CO: intersection ([], B, []).

C1: intersection ([Ah|At], B, [Ah|Ct]) :-
member (Ah,B), !,
intersection (At, B, Ct).

C2: intersection ([Ah]|At], B, C) :- intersection (At, B, C).

e Why cut?
— C1 will apply if head of A is a member of B.
— C2 will apply if head of A is not a member of B, i.e. if the “fence”
of | has not been crossed.
— Why not a ! for CO? The [Ah]|At] will not be unifiable with a []
anyways.

York University- CSE 3401- V. Movahedi 07_CutNotFail 15

The cut-fail combination

 fail is a built-in predicate, w/o any arguments, which
always fails.

a:- b,c, |, fail.
a:-d.

If b and c can be satisfied, a will fail and no more attempts
will be made to re-satisfy a.

York University- CSE 3401- V. Movahedi 07_CutNotFail

16

I, fail. Example

e The average tax payer

average taxpayer(X):- foreigner(X), !, fail.

average taxpayer(X):- spouse(X, Y),
gross_income(Y, Inc),
Inc > 3000,
I, fail.

average taxpayer(X):- gross_income(X, Inc),

2000 < Inc, 20000> Inc.

e Hard to write with not:
average taxpayer(X):- \+foreigner(X),
\+((spouse(X,Y), gross_income(Y, Inc), Inc>3000)),
gross_income(X, Inc),
2000 < Inc, 20000> Inc.

I, fail. Example

e Actually not is defined using fail:

not(P):- call(P), !, fail.
not().

— ‘call’ queries the database with the predicate P.
— |If P succeeds, not(P) will fail.
— Otherwise not(P) will succeed.

— Note that due to Prolog’s method of resolving with the leftmost
subgoal, ! will not be reached unless call(P) succeeds.

— head :- 3, b, c.
b and c won’t be satisfied unless a is satisfied.
c will not be satisfied unless a and b are satisfied.

Warning!

e not(not(P) is not the same as P!

e Example(1):
try1(X) :- member(X, [a, b, c]) .
- try1(X).

X X X
o on
® o oo

—h
L
n
)

e Example (2):
try2(X) :- not(not (member(X, [a, b, c]))).
- try2(X).
true.
X not instantiated! True for any X!

York University- CSE 3401- V. Movahedi 07_CutNotFail

19

Terminate a “generate & test” sequence

e Example:
divide(N1, N2, Result) :- is_integer(Result),
P1is Result * N2,
P2 is (Result +1) * N2,
P1=<N1, P2>N1i,!.

For example divide(10, 4, 2).

 Generate: Yield all alternatives
is_integer is the generator of ‘Result’, it generates 0, 1, 2, ...

e Test: Check whether a solution is acceptable
All other subgoals test if ‘Result’ is acceptable

e CUT: Terminates the generate & test sequence once one
solution is found.

York University- CSE 3401- V. Movahedi 07_CutNotFail 20

Tic-tac-toe

e |Is the o-player forced to put o in a particular position (is
x-player threatening to win on its next move?)

b(B1, B2, B3, B4, B5, B6, B7, B8, B9) represents the board
For example: b(e,x,0, e,x,e, e,e,e)

d

We can define line(B, X,Y,Z) to instantiate
X,Y, Z to positions that make up a line:

__.___,
x | x |

|ine(b(XIYIZI Y JE S | _I_I_)I XIYIZ)'
|ine(b(_’_l_l XIYIZI _I_I_)I XIYIZ)'

line(b(XI_I_I Y;_)_) ZI_I_)I X;Y;Z)

=
2
2
X
=
N
X
=
N
=
|
| I S p—

line(b(XI_I_I ;Y;_; _I_IZ)I X;Y;Z)

Tic-tac-toe (cont.)

threatening(e, x, x).

threatening(x, e, x).

threatening(x, x, e).

forced_move(Board) :- line(Board, X, Y, Z),
threatening (X, Y, Z),
|

Generator: line(Board, X, Y, Z) generates possible lines

Tester: threatening(X, Y, Z) checks if the line has a threatening
pattern

If the generated line is not threatening, backtracking occurs and
another line is generated

If threatening does not succeed on any line, “forced_move” will fail.

If threatening succeeds, the “fence” will be crossed, therefore no
backtracking (no more solutions, one is enough), and it is
committed to the instantiated Board

Problems with CUT

e Example (1):
append([], X, X) :- L.
append([H]|T], L2, [H]|L]) :- append(T, L2, L).

:-append(X, Y, [a, b, c]).
X=[], Y=[a,b,c];

No more solutions?!

We used ! To indicate correct choice of rule if first list is []
Side effect: no multiple solutions

York University- CSE 3401- V. Movahedi 07_CutNotFail

23

Problems with CUT (cont.)

e Example (2):
no_parents(adam, 0) :- I.
no_parents(eve, 0) :- !.
no_parents(_, 2).

:- no_parents (eve, X).
X=0
Our intention for using cut: No more solutions- works!

:- no_parents(george, X).
X=2

.- no_parents(adam, 2).

true
Side effect: Matches with the last fact!

York University- CSE 3401- V. Movahedi 07_CutNotFail 24

Problems with CUT (cont.)

no_parents(adam, 0) :- !.
no_parents(eve, 0) :- .
no_parents(_, 2).

* Possible modification:
no_parents(adam, 0) .
no_parents(eve, 0) .
no_parents(X, 2) :- not(X=adam), not(X=eve).

Will this work with these queries?
.- no_parents(X,0).
.- no_parents(X, 2).
.- no_parents(X, Y).

York University- CSE 3401- V. Movahedi 07_CutNotFail 25

Problems with CUT (cont.)

e Example (3):
max(X, Y, X) - X>=Y, |
max(X, Y, Y).

.- max(1, 10, 10).
true

.- max(1, 10, Z).
/=10

.- max(10, 1, 7).
/=10

.- max(10, 1, 1).
true 77

York University- CSE 3401- V. Movahedi 07_CutNotFail

26

Warning!

“If you introduce cuts to obtain correct behaviour
when the goals are of one form, there is no guarantee that
anything sensible will happen if goals of another form
start appearing. “ [Clocksin]

e Use cut only if you have a clear policy about the
queries and how the rules are going to be used.

