Introduction to Logic Programming

York University CSE 3401 Vida Movahedi

Overview

- Programming Language Paradigms
 - Logic Programming
 - Functional Programming
- Brief review of Logic
 - Propositional logic
 - Predicate logic

Why Logic Programming?

- View of the world imposed by a language
 A programming language tends to impose a certain view of the world on its users.
- Semantics of the programming languages
 To program with the constructs of a language requires thinking in terms of the semantics of those constructs

Programming Language Paradigms

- (1) Imperative programming
 - Semantics: state based
 - Computation viewed as state transition process
 - Categories:
 - Procedural
 - Object Oriented
 - Other non-structured
 - For example: C, Pascal, Turing are in the Procedural category, steps of computation describe state changing process

Programming Language Paradigms

- (2) Declarative Programming
 - Focus is on logic (WHAT) rather than control (HOW)
 - Categories:
 - Logic Programming: Computation is a reasoning process, e.g. Prolog
 - Functional Programming: Computation is the evaluation of a function, e.g. Lisp, Scheme, ...
 - Constrained Languages: Computation is viewed as constraint satisfaction problem, e.g. Prolog (R)
- Level of language
 - Low level
 - has a world view close to that of the computer
 - High level
 - has a world view closer to that of the specification (describing the problem to be solved, or the structure of the system to be presented)

Logic Programming

- Based on first order predicate logic
- A programmer describes with formulas of predicate logic
- A mechanical problem solver makes inferences from these formulas

Propositional Logic (review)

Alphabet

- Variables, e.g. p, q, r, ..., p₁, ..., p', ...
- Constants: T and F
- Connectives: $\{\neg, \land, \lor, \rightarrow, \equiv\}$
 - or {~, &, #, ->, <-> in some books}
- Brackets: (and)

Well-formed-formula (wff)

- All variables and constants are wffs.
- If A and B are wffs, then the following are also wffs.

$$(\neg A), (A \land B), (A \lor B), (A \to B), (A \equiv B)$$

Priority of connectives, and rules for removing brackets

Propositional Logic (cont.)

- Semantics and truth tables
 - true (1) and false (0)
 - state
 - Tautologies: true in all possible states
- Satisfiable
 - A formula A is satisfiable iff there is at least one state v where v(A)=true
 - A set of formulae X is satisfiable (or consistent) iff there is at least one state v where for every formula A in X, v(A)=true.
- Contradiction: (unsatisfiable, inconsistent)
 - If A is a tautology, ¬A is a contradiction

Predicate Logic (review)

Alphabet

- Alphabet of propositional logic
- Object variables, e.g. x, y, z, ..., x_1 , ..., x',
- Object constants, e.g. a, b, c, ...
- Object equality symbol =
- Quantifier symbols ∀ (and ∃)
- and some functions & predicates

Term

- An object variable or constant, e.g. x, a
- A function f of n arguments, where each argument is a term, e.g. $f(t_1, t_2, ...t_n)$ $t_1 \longrightarrow$

 $\begin{array}{ccc} t_1 & & & \\ & \vdots & & \\ t_n & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

Predicate Logic (cont.)

- Atomic formula
 - A Boolean variable or constant
 - The string t = s, where t and s are terms
 - A predicate \emptyset of n arguments where each argument is a term , e.g. $\emptyset(t_1, t_2, ...t_n)$

 $t_1 \longrightarrow \emptyset \longrightarrow a formula$ $t_n \longrightarrow (true or false)$

- Well-formed formula
 - Any atomic formula
 - If A and B are wffs, then the following are also wffs.

$$(\neg A), (A \land B), (A \lor B), (A \to B), (A \equiv B), ((\forall x)A), ((\exists x)A)$$

Examples

Numbers

- Object constants: 1, 2, 3, ...
- Functions: +, -, *, /, ...
- Predicates: >, <, ...</p>
- Examples of wffs: $>(x, y) \rightarrow > (+(x,1), y)$

Or the familiar notation: $x > y \rightarrow x + 1 > y$

Another example: $x!=z \rightarrow (x+1)!=(x+1)*z$

Sets

- Object constants: {1}, {2,3},...
- Functions: \bigcup , \bigcap ,...
- − Predicates: \subset , \subseteq ,...
- A wff: $(x \cap \overline{y}) \subseteq (x \cup y)$

More Examples

Our world

- Object variables: X, Y, ...
 - upper case in PROLOG
- Constants such as: john, mary, book, fish, flowers, ...
 - Note lower case in PROLOG
- Functions: distance(point1, X), wife(john)
- Predicates: owns(book, john), likes(mary, flowers), ...
- true and false in PROLOG
 - Relative to PROLOG's knowledge of the world
 - False whenever it cannot find it in its database of facts (and rules)