York University- CSE 3401- Summer 2010 Page: 1

York University- Department of Computer Science and Engineering

SC/CSE 3401 3.00 — Functional and Logic Programming

Solutions to assignment 1

1) (5 marks) Consider the following formulae:

A: p—>q—r
B: p—>r—q
C: pA—=(r—q)
Using truth tables, show which of the following sets are satisfiable and why?
a) {A, B}
b) {B, C}
c) {A B,C}
Answer.
A: B: C:
PId|r |42 | P2>0>0 | IF>0 | P=>Ir—=>0 | (r—>q) pA=(r—q)
1 f f f t t t t f f
2 f f t t t f t t f
3 f t f f t t t f f
4 f t t t t t t f f
5 t f f t t t t f f
6 t f t t t f f t t
7|t t f f f t t f f
8 t t t t t t t f f

a) Set{A, B}is satisfiable. All rows of the truth table except rows 6 and 7 show states which can
make both formulae true.

b) Set{B, C}is not satisfiable (it is inconsistent). No state (none of the rows in the truth table) can
make all formulae in this set true.

c) Set{A,B,C}is not satisfiable either. It has an inconsistent subset.

2) (5 marks) Consider the following formula in the sets domain:

(M)(WY)(V2)({aUxc yUx) A(yUxczUx) > ({a}Ux = zUx))
(a) List all the terms in the above formula that are not object variable or object constants.
(b) List all atomic formulas in the above formula.
(c) Is the formula semantically true? If yes, say why and if no, provide a counter example.

York University- CSE 3401- Summer 2010 Page: 2

Answer.

(a) The terms in the above equation which are not object variables or object constants, are terms
constructed with functions. They are:

{a3uUx, yUx, zUx
(b) The atomic formulas in above formula are:
{a}UxcyUx, yUxczUx, {a}UxczUx

(c) The above formula is not semantically true. Here is a counter-example:

Assume x is { } (the empty set) and both y and z are {a}. If the formula is true for all x, y, z it must be
true for the assumed values of x, y, z as well. Substituting in the formula we have:

({a}UxcyUx)a(yUxczUx) > {arUx < zUXx))
= (({aYU{3 ={arU{d) A {arU{} ={a}U{}) » {atU{3 ={a}U{})
= ({a}={a}) »({a} = {a}) » ({a} ={a})

The left side of the implication is true and the right side is false, resulting in a false. We therefore
showed with a counterexample that the formula is not true.

3)(6 marks) Convert the following formulae in propositional logic to logic programming clauses. Indicate
which ones are Horn clauses. Clearly show ALLsteps. ((p—>q)vr)=(qAS)

Answer.

Convert to CNF first :
(p>a)vr)=(qnas)
1 -Remove implications and equivalences
= (P> v > @rs))A(@As) > ((p>a)vr)
= (((=pva) v vE@as)a(=(@as)v((=pva)vr)
2 -Move negations inward
=>((pPA=GA-N)V(AAS))A(=GY =8) v (=pvavr))
3 -Distribute OR over AND
=((Pv@As) A=AV @A) A (I vV (@Aas))A(-qv—sv—pvaqvr)
=S(PVOAPV)AEGVAA(-GVS) A (VA A (V) A(=gyv —sv—pvqvr)

York University- CSE 3401- Summer 2010 Page: 3

Write as logic programming clauses :

p:q:-.
p;S:i—.
g:—q.

= S:—q.
q:-T.
S.—T.
qlr_q!si p

The first, second, and seventh clauses are not Horn clauses. The rest are Horn clauses. Since all the
resulting clauses are not Horn clauses, converting to logic programming clauses fails.

4) (8 marks) Convert the following formula in predicate logic to logic programming clauses. Indicate
which ones are Horn clauses. Clearly show ALL steps (m and n are predicates):

(@)(vy)m(x, y)) = ((v)@y)n(y, X))

Answer.

Convert to CNF first: (@)(7y)m(x, y)) = (¥)@Ey)n(y, X))

1- Remove implication = —(@)(vy)m(x, y))v (V) @y)n(y, X))
2- Move negations inward = ((vX)@y)-m(x, y))v ((vX)@y)n(y, X))
3- Rename variables = ((vX)@y)-m(x, y))v ((vz)@Ew)n(w, z))
4- Prenex Normal Form = (VX)(3y)(vz) @w)(=m(X, y) v n(w, z))
5- Skolemizing = (VX)(VZ)(=m(x, f(x)) v n(g(2),2))

6- Distribute OR over AND (nothing to do)

7- Remove Universal Quantifiers = —m(x, f(x))vn(g(z),2)

Writing as Logic Programming Clauses: n(g(z),z) : —m(x, f(x)).

This is a Horn clause (a rule).

5) (5 marks) (a) Using what we covered about arithmetic in Prolog, write a simple predicate
convert(Pounds, Kilos) that can convert weight in pounds to kilograms. (b) Write a query to get your
weight in kilograms given your weight in pounds. (c) Write a query to get your weight in pounds given
your weight in Kilos. This query will not return an answer to you, why?

Answer.

(a) convert(Pounds, Kilos):- Kilos is Pounds * 0.45359.

York University- CSE 3401- Summer 2010 Page: 4

(b) :- convert(200, K).

(c) :- convert(P, 100).
This will return an error. The operator ‘is’ evaluates the right hand side and matches it with its
left argument. Yet, the right hand side of ‘is’ is not instantiated, therefore evaluation is not
possible.

6) (14 marks) Consider the following program:
Co: findS(X, s(L1, L2)):- findL(X, L1).

Cl: findS(X,s(L1,L2)):- findL(X, L2).

C2: findL(X, [X]L]).

C3: findL(X, [_|L]):- findL(X,L).

Draw the complete search tree for this query:
GO: :- findS(X, s([a,b], [1])).

Label all branches. Under each leaf node, mention why backtracking occurs. If there are any outputs by
Prolog, indicate them too.

.- findS(X, s([a,b], [1])).

€0, [Xo/X, L1o/[2,b], L20/[1]] w L15/1a,b], 125/111]

:- findL(X, [a,b]). i- findL(X, [1]).
c2, [X/a, Llfy \63 [XafX, Lo/[b]] c2, [x/1, Le/[1] €3, [Xa/X, Li/[1]
:- findL(X, [b]). o - findL(X, [])
X=a;

(backtrack if
user enters ;)

X=1; false.
€2, [X/b, Ls/1] C3, [Xa/X, L/[1] (backtrack if fails to resolve
with anything,
user enters ;)

and nothing else

O . —findL(X, []). to try.
[bat;ktrack i fails to resolve
with anything,

user enters ;) backtrack
acktrac

7) (10 marks) Write a Prolog program by the following design specifications that given a list of numbers,
returns a list of remainders of division by 8. For example:

:- mod8([8, 9, 16, 15], [0,1,0,7]). will true.

:- mod8([1,20,10,11], L). will return L=[1,4,2,3].

York University- CSE 3401- Summer 2010 Page: 5

(a) (3 marks) Write a recursive code.

(b) (3 marks) Write an iterative code with an accumulator. (It will return the list in the reverse
order, for example the second example above will return L=[3,2,4,1])

(c) (4 marks) Write the above code with difference lists, similar to the parts example in class.

mod81([], [D)-
mod81([X|L1], [YIL2]):- Y is X mod 8, mod81(L1l, L2).

mod82(L1, L2):- mod82(L1,[], L2).
mod82([], A, A)-
mod82([X|L1],A, L2):- Y is X mod 8, mod82(L1,[Y]A].,L2).

mod83(L1, L2):- mod83(L1,[], L2).

mod83_F(X, Hole,[Y|Hole]):- Y is X mod 8.

mod83([], Hole, Hole).

mod83([X]L1],Hole, L2):- mod83_f(X, Holel,L2) , mod83(L1,Hole,Holel).

