CSE 3101: Introduction to the Design and Analysis of Algorithms

Instructor: Suprakash Datta (datta@cs.yorku.ca) ext 77875

Lectures: Tues (BC 215), 7–10 PM

Office hours: Wed 4-6 pm (CSEB 3043), or by

appointment.

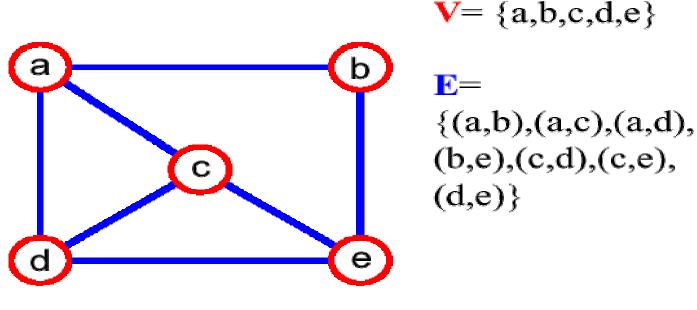
Textbook: Cormen, Leiserson, Rivest, Stein. Introduction to Algorithms (3rd Edition)

Next: Graph Algorithms

- Graphs
- Graph representations
 - adjacency list
 - adjacency matrix
- Traversing graphs
 - Breadth-First Search
 - Depth-First Search

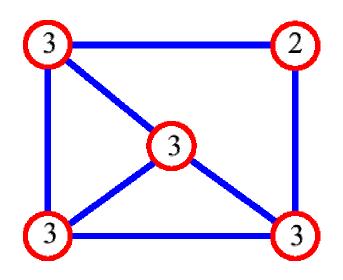
Graphs - Definition

- A graph G = (V,E) is composed of:
 - V: set of vertices
 - $E \subset V \times V$: set of **edges** connecting the **vertices**
- An edge e = (u,v) is a pair of vertices
- (u,v) is ordered, if G is a directed graph



Graph Terminology

- adjacent vertices: connected by an edge
- degree (of a vertex): # of adjacent vertices



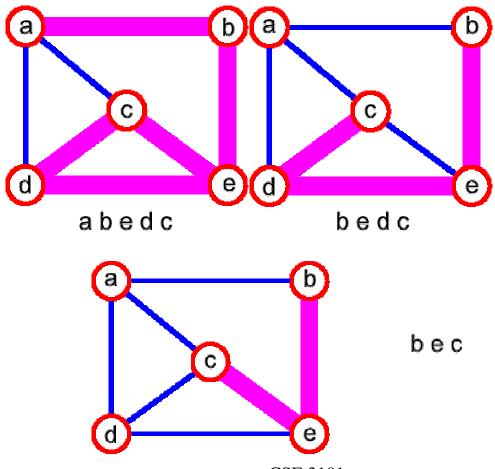
$$\sum_{v \in V} \deg(v) = 2(\# \text{ of edges})$$

Since adjacent vertices each count the adjoining edge, it will be counted twice

• path: sequence of vertices v_1 , v_2 , ... v_k such that consecutive vertices v_i and v_{i+1} are adjacent

Graph Terminology (2)

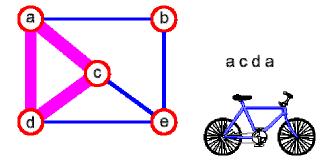
• simple path: no repeated vertices



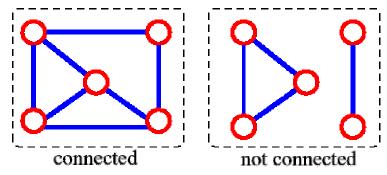
7/15/2010 CSE 3101 5

Graph Terminology (3)

 cycle: simple path, except that the last vertex is the same as the first vertex

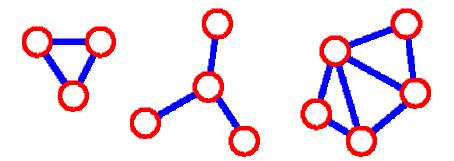


 connected graph: any two vertices are connected by some path



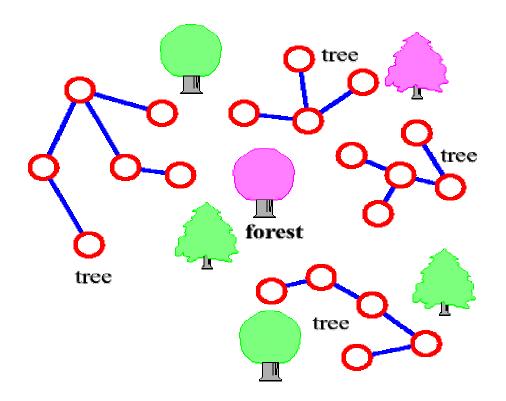
Graph Terminology (4)

- subgraph: subset of vertices and edges forming a graph
- connected component: maximal connected subgraph. E.g., the graph below has 3 connected components



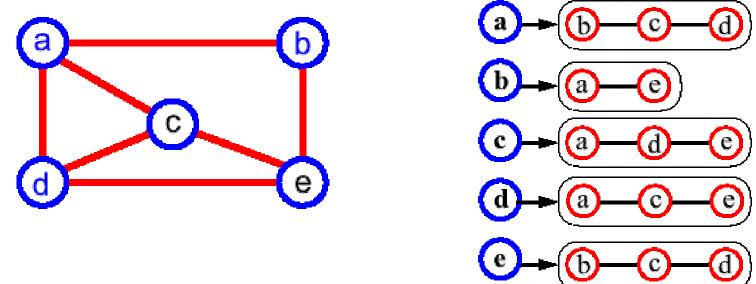
Graph Terminology (5)

- (free) tree connected graph without cycles
- forest collection of trees



Data Structures for Graphs

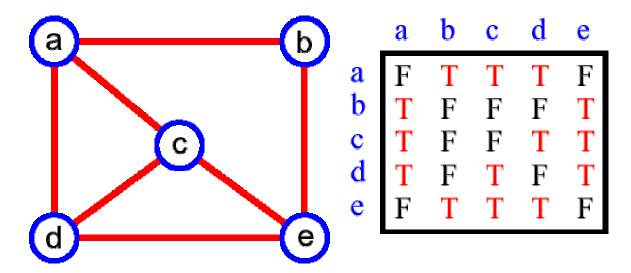
- The Adjacency list of a vertex v: a sequence of vertices adjacent to v
- Represent the graph by the adjacency lists of all its vertices



Space =
$$\Theta(n + \sum \deg(v)) = \Theta(n + m)$$

Data Structures for Graphs

- Adjacency matrix
- Matrix M with entries for all pairs of vertices
- M[i,j] = true there is an edge (i,j) in the graph
- M[i,j] = false there is no edge (i,j) in the graph
- Space = $O(n^2)$

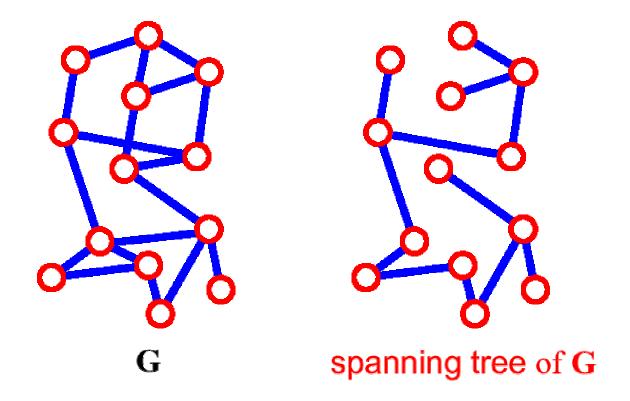


Breadth First Search (2)

- In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and assigned a distance of 2
- This continues until every vertex has been assigned a level
- The label of any vertex v corresponds to the length of the shortest path (in terms of edges) from s to v

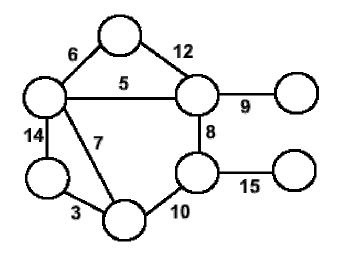
Spanning Tree

- A spanning tree of G is a subgraph which
 - is a tree
 - contains all vertices of G



Minimum Spanning Trees

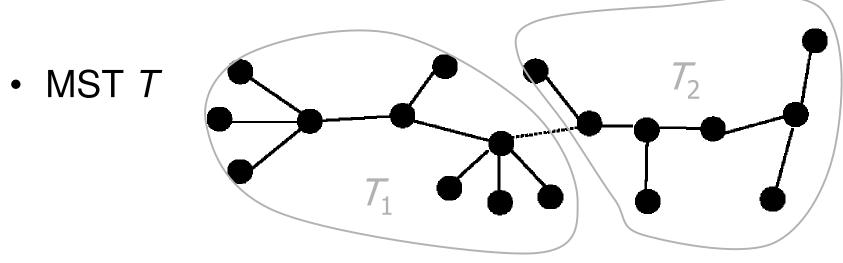
- Undirected, connected graph G = (V,E)
- Weight function $W: E \rightarrow R$ (assigning cost or length or other values to edges)



- Spanning tree: tree that connects all vertices
- Minimum spanning tree: tree that connects all the vertices and minimizes

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$

Optimal Substructure



- Removing the edge (u,v) partitions T into T_1 and T_2 $w(T) = w(u,v) + w(T_1) + w(T_2)$
- We claim that T_1 is the MST of $G_1=(V_1,E_1)$, the subgraph of G induced by vertices in T_1
- Also, T_2 is the MST of G_2

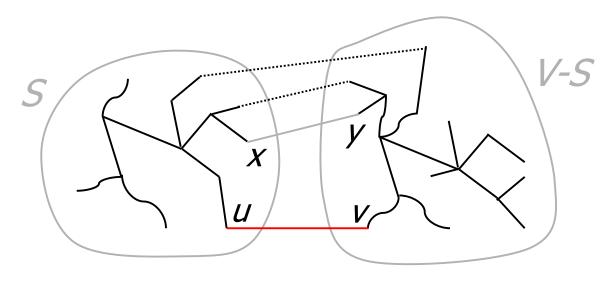
Greedy Choice

- Greedy choice property: locally optimal (greedy) choice yields a globally optimal solution
- Theorem
 - Let G=(V, E), and let $S\subseteq V$ and
 - let (u,v) be min-weight edge in G connecting S to V-S
 - Then (u,v) ∈ T some MST of G

Greedy Choice (2)

Proof

- suppose (u,v) ∉ T
- look at path from u to v in T
- swap (x, y) the first edge on path from u to v in T that crosses from S to V S
- this improves T- contradiction (T supposed to be MST)



Generic MST Algorithm

```
Generic-MST(G, w)

1 A←Ø // Contains edges that belong to a MST

2 while A does not form a spanning tree do

3 Find an edge (u,v) that is safe for A

4 A←A∪{(u,v)}

5 return A
```

Safe edge – edge that does not destroy A's property

```
MoreSpecific-MST(G, w)

1 A←Ø // Contains edges that belong to a MST

2 while A does not form a spanning tree do

3.1 Make a cut (S, V-S) of G that respects A

3.2 Take the min-weight edge (u,v) connecting S to V-S

4 A←A∪{(u,v)}

5 return A
```

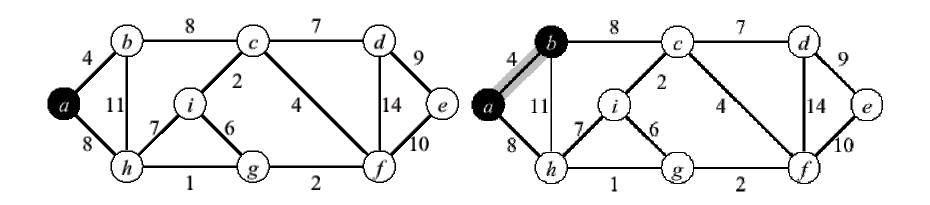
Prim's Algorithm

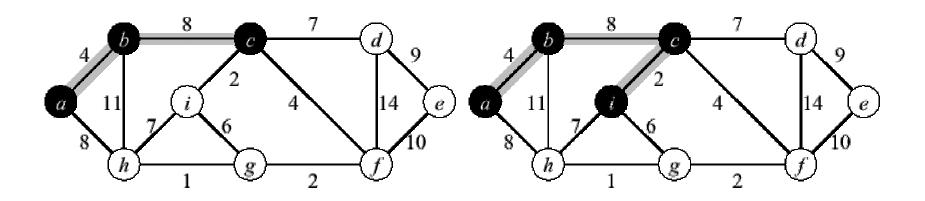
- Vertex based algorithm
- Grows one tree T, one vertex at a time
- A cloud covering the portion of T already computed
- Label the vertices v outside the cloud with key[v] the minimum weight of an edge connecting v to a vertex in the cloud, key[v] = ∞, if no such edge exists

Prim's Algorithm (2)

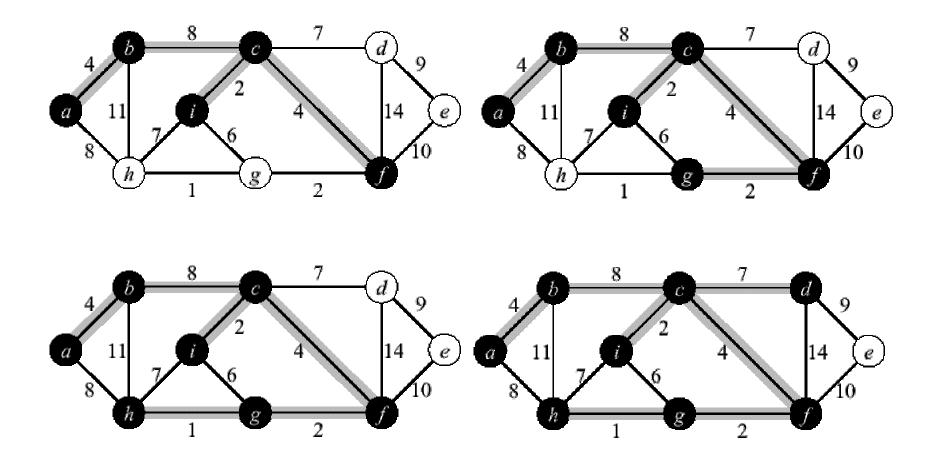
```
MST-Prim(G, w, r)
01 Q \leftarrow V[G] // Q - vertices out of T
02 for each u \in O
03 key[u] \leftarrow \infty
04 \text{ key[r]} \leftarrow 0
05 \pi[r] \leftarrow NIL
06 while Q \neq \emptyset do
07 u \leftarrow ExtractMin(Q) // making u part of T
           for each v \in Adj[u] do
0.8
               if v \in Q and w(u, v) < key[v] then
09
                                                              updating
10
                   \pi[v] \leftarrow u
                                                              keys
11
                  \text{key[v]} \leftarrow \text{w(u,v)}
```

Prim Example

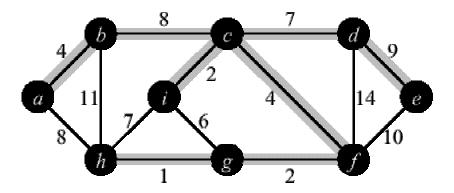




Prim Example (2)



Prim Example (3)



Priority Queues

- A priority queue is a data structure for maintaining a set S of elements, each with an associated value called key
- We need PQ to support the following operations
 - BuildPQ(S) initializes PQ to contain elements of S
 - ExtractMin(S) returns and removes the element of S with the smallest key
 - ModifyKey(S,x,newkey) changes the key of x in S
- A binary heap can be used to implement a PQ
 - BuildPQ O(n)
 - ExtractMin and ModifyKey O(lg n)

Prim's Running Time

- Time = |V| T(ExtractMin) + O(|E|) T(ModifyKey)
- Time = O(|V| |g| V/ + |E/ |g| V/) = O(|E/ |g| V/)

Q	T(ExtractMin)	T(DecreaseKey)	Total
array	O(V/)	<i>O</i> (1)	O(V/2)
binary heap	O(lg /V/)	O(lg V/)	O(E/ lg V/)
Fibonacci	O(lg /V/)	O(1) amortized	O(V/ lg V/
heap			+ <i>E</i> /)

Kruskal's Algorithm

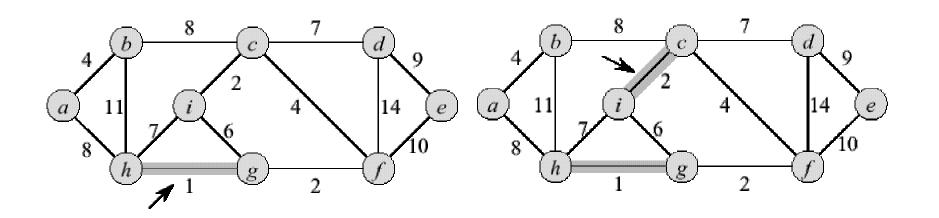
- Edge based algorithm
- Add the edges one at a time, in increasing weight order
- The algorithm maintains A a forest of trees.
 An edge is accepted it if connects vertices of distinct trees
- We need an ADT that maintains a partition, i.e.,a collection of disjoint sets
 - MakeSet(S,x): S ← S ∪ {{x}}
 - $\operatorname{Union}(S_i, S_j) : S \leftarrow S \{S_i, S_j\} \cup \{S_i \cup S_j\}$
 - FindSet(S, x): returns unique $S_i \in S$, where $x \in S_i$

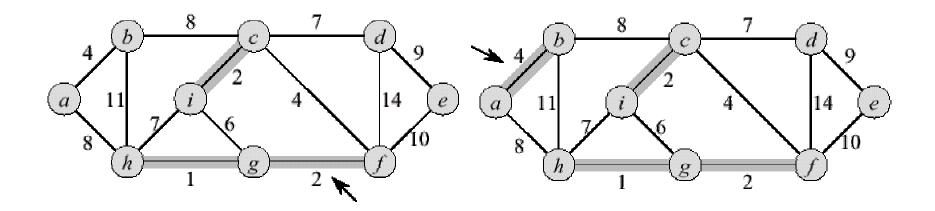
Kruskal's Algorithm

 The algorithm keeps adding the cheapest edge that connects two trees of the forest

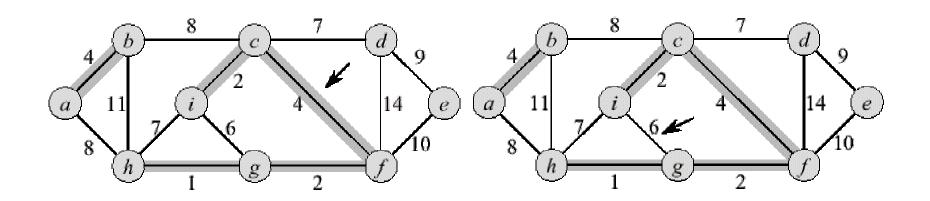
```
MST-Kruskal(G, w)
01 A ← Ø
02 for each vertex v ∈ V[G] do
03     Make-Set(v)
04 sort the edges of E by non-decreasing weight w
05 for each edge (u,v)∈ E, in order by non-decreasing weight do
06    if Find-Set(u) ≠ Find-Set(v) then
07         A ← A ∪ {(u,v)}
08         Union(u,v)
09 return A
```

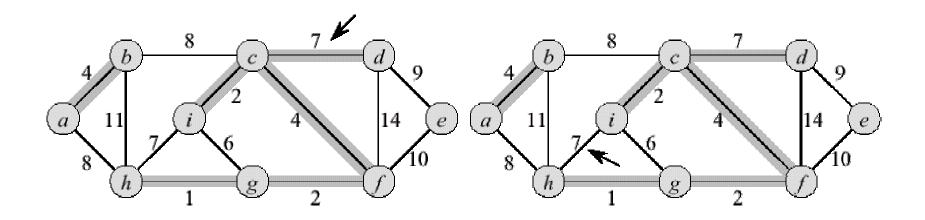
Kruskal's Algorithm: example



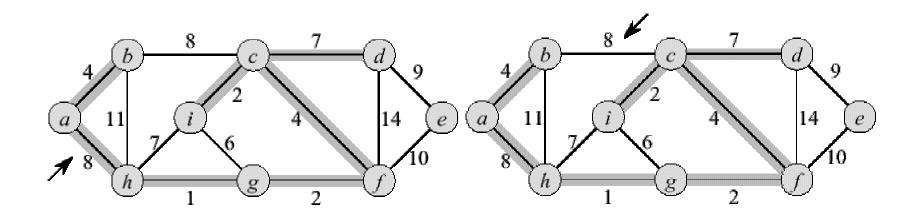


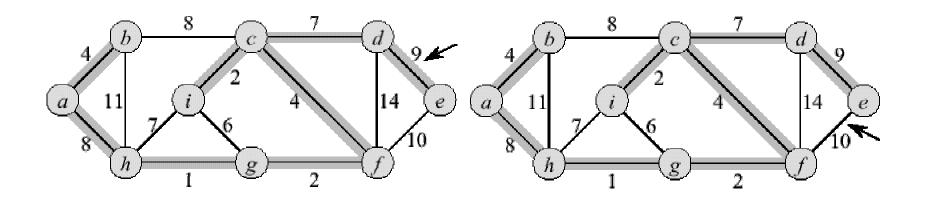
Kruskal's Algorithm: example (2)



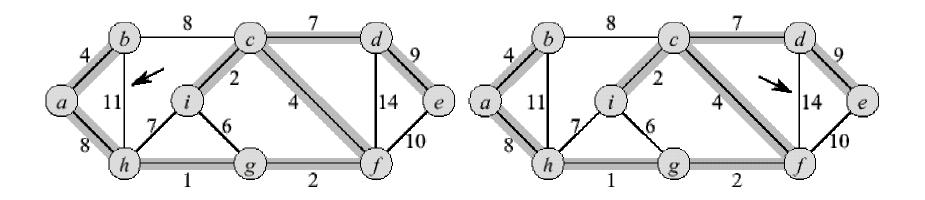


Kruskal's Algorithm: example (3)





Kruskal's Algorithm: example (4)



Kruskal running time

- Initialization O(|V/) time
- Sorting the edges Θ(|E/ lg /E/) = Θ(|E/ lg /V/) (why?)
- O(|E|) calls to FindSet
- Union costs
 - Let t(v) the number of times v is moved to a new cluster
 - Each time a vertex is moved to a new cluster the size of the cluster containing the vertex at least doubles: $t(v) \le \log |V|$
 - Total time spent doing Union $\sum_{v \in V} t(v) \le |V| \log |V|$
- Total time: O(|E/ lg |V/)

Next: Graph Algorithms

- Graphs
- Graph representations
 - adjacency list
 - adjacency matrix
- Traversing graphs
 - Breadth-First Search
 - Depth-First Search

Graph Searching Algorithms

- Systematic search of every edge and vertex of the graph
- Graph G = (V,E) is either directed or undirected
- Today's algorithms assume an adjacency list representation
- Applications
 - Compilers
 - Graphics
 - Maze-solving
 - Mapping
 - Networks: routing, searching, clustering, etc.

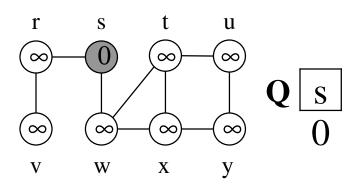
Breadth First Search

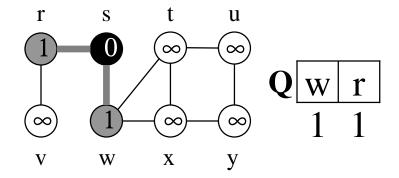
- A Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so defines a spanning tree with several useful properties
- BFS in an undirected graph G is like wandering in a labyrinth with a string.
- The starting vertex s, it is assigned a distance 0.
- In the first round, the string is unrolled the length of one edge, and all of the edges that are only one edge away from the anchor are visited (discovered), and assigned distances of 1

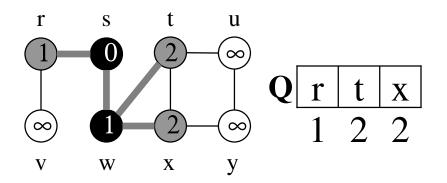
Breadth First Search (2)

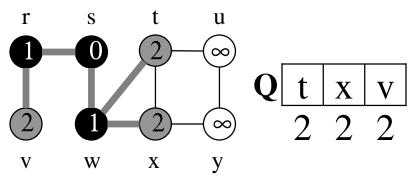
- In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and assigned a distance of 2
- This continues until every vertex has been assigned a level
- The label of any vertex v corresponds to the length of the shortest path (in terms of edges) from s to v

Breadth First Search: example

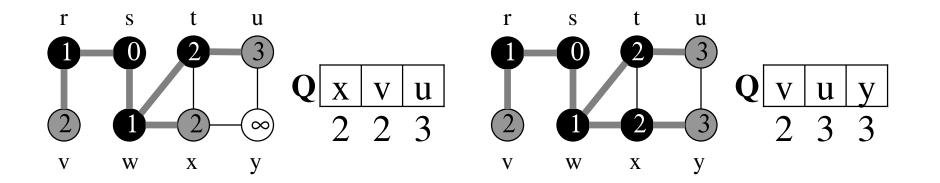


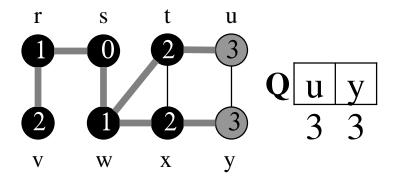


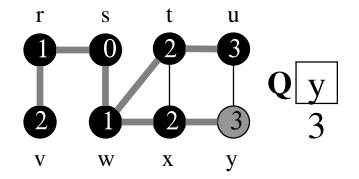




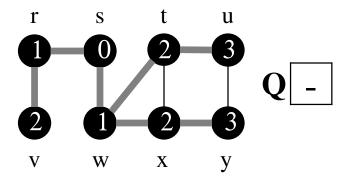
Breadth First Search: example







Breadth First Search: example



BFS Algorithm

BFS(G,s)

```
01 for each vertex u \in V[G]-\{s\}
02 color[u] \leftarrow white
03 d[u] \leftarrow \infty
04 \quad \pi[u] \leftarrow \text{NIL}
05 \text{ color[s]} \leftarrow \text{gray}
06 \text{ d[s]} \leftarrow 0
07 \pi[u] \leftarrow NIL
08 Q \leftarrow \{s\}
09 while 0 \neq \emptyset do
10 u \leftarrow head[Q]
11 for each v \in Adj[u] do
12
           if color[v] = white then
13 color[v] \leftarrow gray
14
           d[v] \leftarrow d[u] + 1
15 \pi[v] \leftarrow u
16 Enqueue (Q, v)
17 Dequeue (Q)
18
        color[u] \leftarrow black
```

Init all vertices

Init BFS with *s*

Handle all *Us* children before handling any children of children

BFS Algorithm: running time

- Given a graph G = (V,E)
 - Vertices are enqueued if there color is white
 - Assuming that en- and dequeuing takes O(1) time the total cost of this operation is O(|V|)
 - Adjacency list of a vertex is scanned when the vertex is dequeued (and only then...)
 - The sum of the lengths of all lists is O(|E|). Consequently, O(|E|) time is spent on scanning them
 - Initializing the algorithm takes O(|V|)
- Total running time O(|V|+|E|) (linear in the size of the adjacency list representation of G)

7/15/2010 CSE 3101 40

BFS Algorithm: properties

- Given a graph G = (V,E), BFS discovers all vertices reachable from a source vertex s
- It computes the shortest distance to all reachable vertices
- It computes a breadth-first tree that contains all such reachable vertices
- For any vertex v reachable from s, the path in the breadth first tree from s to v, corresponds to a shortest path in G

BFS Tree

Predecessor subgraph of G

$$G_{\pi} = (V_{\pi}, E_{\pi})$$

$$V_{\pi} = \{ v \in V : \pi[v] \neq NIL \} \cup \{ s \}$$

$$E_{\pi} = \{ (\pi[v], v) \in E : v \in V_{\pi} - \{ s \} \}$$

- G_p is a breadth-first tree
 - V_D consists of the vertices reachable from s, and
 - for all $v \in V_p$, there is a unique simple path from s to v in G_p that is also a shortest path from s to v in G
- The edges in G_p are called tree edges

Depth-first search (DFS)

- A depth-first search (DFS) in an undirected graph G is like wandering in a labyrinth with a string and a can of paint
 - We start at vertex s, tying the end of our string to the point and painting s "visited (discovered)".
 Next we label s as our current vertex called u
 - Now, we travel along an arbitrary edge (u, v).
 - If edge (u,v) leads us to an already visited vertex v we return to u
 - If vertex v is unvisited, we unroll our string, move to v, paint v "visited", set v as our current vertex, and repeat the previous steps

Depth-first search (2)

- Eventually, we will get to a point where all incident edges on u lead to visited vertices
- We then backtrack by unrolling our string to a previously visited vertex v. Then v becomes our current vertex and we repeat the previous steps
- Then, if all incident edges on v lead to visited vertices, we backtrack as we did before. We continue to backtrack along the path we have traveled, finding and exploring unexplored edges, and repeating the procedure

Depth-first search algorithm

- Initialize color all vertices white
- Visit each and every white vertex using DFS-Visit
- Each call to DFS-Visit(u) roots a new tree of the depth-first forest at vertex u
- A vertex is white if it is undiscovered
- A vertex is gray if it has been discovered but not all of its edges have been discovered
- A vertex is **black** after all of its adjacent vertices have been discovered (the adj. list was examined completely)

Depth-first search algorithm (2)

$\mathrm{DFS}(G)$

```
1 for each vertex u \in V[G]
       \mathbf{do}\ color[u] \leftarrow \mathbf{WHITE}
3 \ time \leftarrow 0
4 for each vertex u \in V[G]
        do if color[u] = WHITE
                then DFS-Visit(u)
```

Init all vertices

DFS-Visit(u)

```
1 \ color[u] \leftarrow \text{GRAY}
                                            \triangleright White vertex u discovered.
```

 $2 d[u] \leftarrow time$ → Mark with discovery time.

 $3 \ time \leftarrow time + 1$ \triangleright Tick global time.

```
4 for each v \in Adj[u] \triangleright Explore all edges (u, v).
5 do if color[v] = WHITE
```

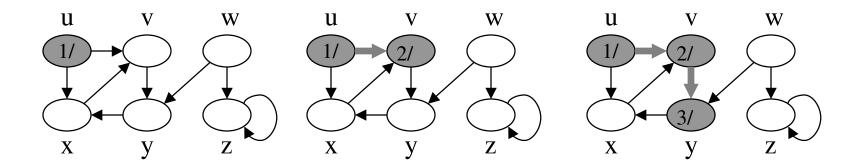
then DFS-Visit(v)

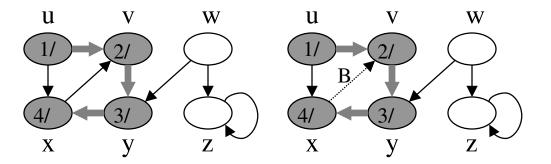
 $7 \ color[u] \leftarrow BLACK$ \triangleright Blacken u; it is finished.

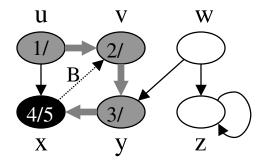
 $8 f[u] \leftarrow time$ → Mark with finishing time.

 $9 \ time \leftarrow time + 1$ □ Tick global time. Visit all children recursively

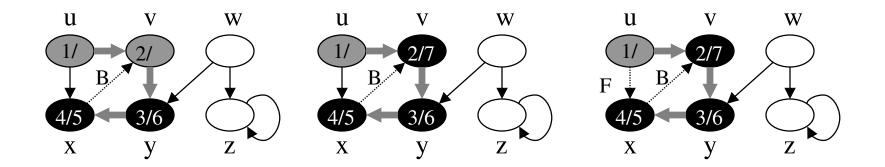
Depth-first search example

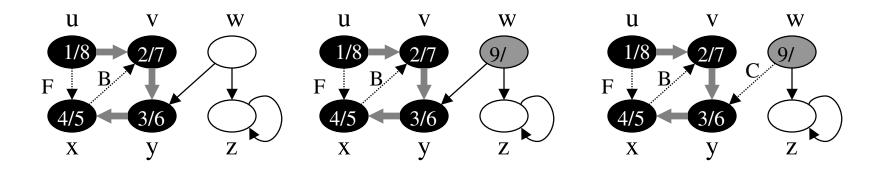




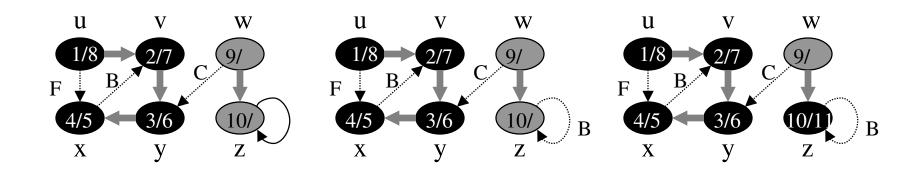


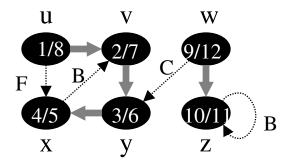
Depth-first search example (2)





Depth-first search example (3)





Depth-first search example (4)

- When DFS returns, every vertex u is assigned
 - a discovery time d[u], and a finishing time f[u]
- Running time
 - the loops in DFS take time $\Theta(V)$ each, excluding the time to execute DFS-Visit
 - DFS-Visit is called once for every vertex
 - · its only invoked on white vertices, and
 - paints the vertex gray immediately
 - for each DFS-visit a loop interates over all Adj[v]
 - the total cost for DFS-Visit is $\Theta(E)$

$$\sum_{v \in V} |Adj[v]| = \Theta(E)$$

– the running time of DFS is $\Theta(V+E)$

Predecessor Subgraph

Defined slightly different from BFS

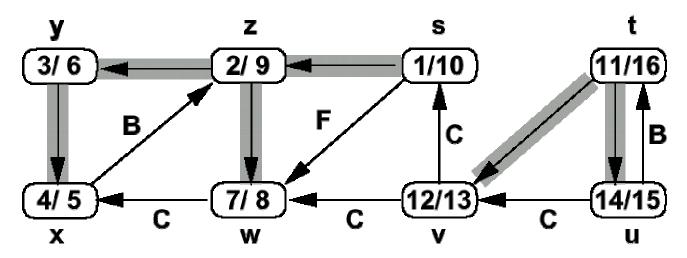
$$G_{\pi} = (V, E_{\pi})$$

$$E_{\pi} = \{ (\pi[v], v) \in E : v \in V \text{ and } \pi[v] \neq \text{NIL} \}$$

- The PD subgraph of a depth-first search forms a depth-first forest composed of several depth-first trees
- The edges in G_p are called tree edges

DFS Timestamping

- The DFS algorithm maintains a monotonically increasing global clock
 - discovery time d[u] and finishing time f[u]
- For every vertex u, the inequality d[u] <
 f[u] must hold



7/15/2010

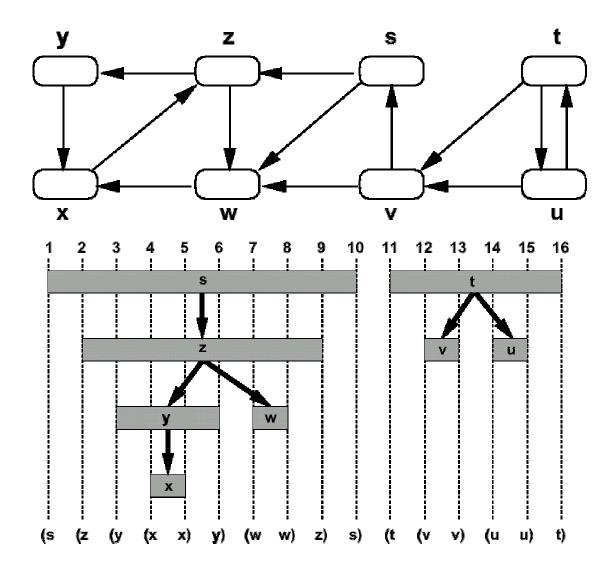
DFS Timestamping

- Vertex u is
 - white before time d[u]
 - gray between time d[u] and time f[u], and
 - black thereafter
- Notice the structure througout the algorithm.
 - gray vertices form a linear chain
 - correponds to a stack of vertices that have not been exhaustively explored (DFS-Visit started but not yet finished)

DFS Parenthesis Theorem

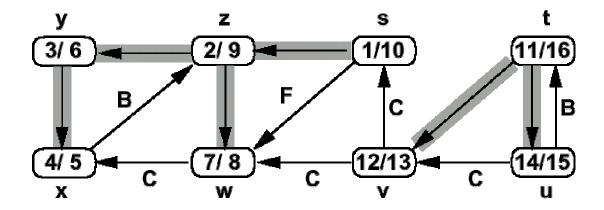
- Discovery and finish times have parenthesis structure
 - represent discovery of u with left parenthesis "(u"
 - represent finishin of u with right parenthesis "u)"
 - history of discoveries and finishings makes a wellformed expression (parenthesis are properly nested)
- Intuition for proof: any two intervals are either disjoint or enclosed
 - Overlaping intervals would mean finishing ancestor, before finishing descendant or starting descendant without starting ancestor

DFS Parenthesis Theorem (2)



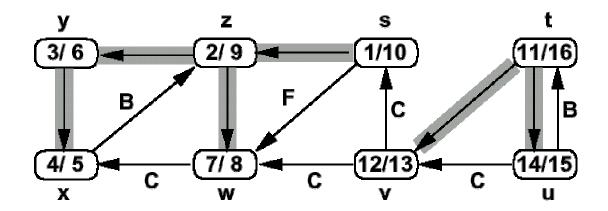
DFS Edge Classification

- Tree edge (gray to white)
 - encounter new vertices (white)
- Back edge (gray to gray)
 - from descendant to ancestor



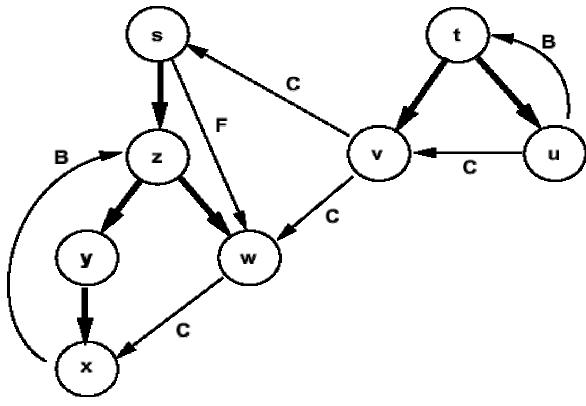
DFS Edge Classification (2)

- Forward edge (gray to black)
 - from ancestor to descendant
- Cross edge (gray to black)
 - remainder between trees or subtrees



DFS Edge Classification (3)

- Tree and back edges are important
- Most algorithms do not distinguish between forward and cross edges



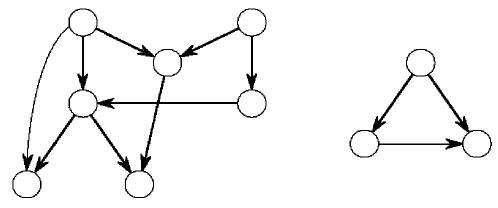
7/15/2010 CSE 3101 58

Next:

Application of DFS: Topological Sort

Directed Acyclic Graphs

A DAG is a directed graph with no cycles



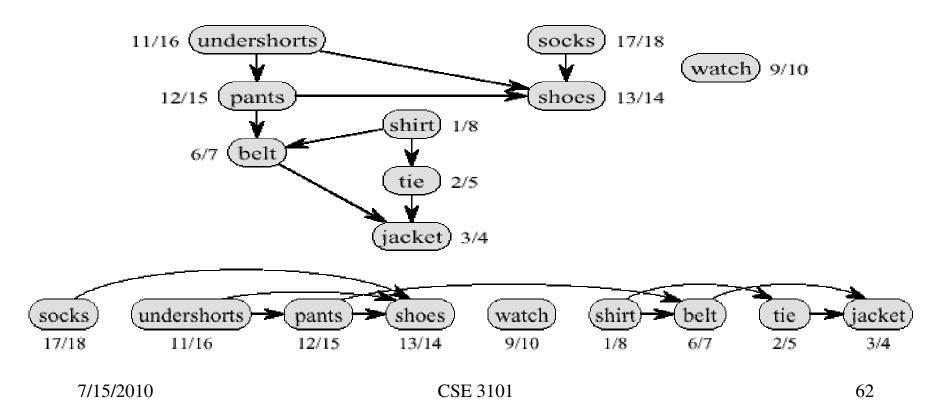
- Often used to indicate precedences among events, i.e., event a must happen before b
- An example would be a parallel code execution
- Total order can be introduced using Topological Sorting

DAG Theorem

- A directed graph G is acyclic if and only if a DFS of G yields no back edges. Proof:
 - suppose there is a back edge (u,v); v is an ancestor of u in DFS forest. Thus, there is a path from v to u in G and (u,v) completes the cycle
 - suppose there is a cycle c; let v be the first vertex in c to be discovered and u is a predecessor of v in c.
 - Upon discovering v the whole cycle from v to u is white
 - We must visit all nodes reachable on this white path before return DFS-Visit(v), i.e., vertex u becomes a descendant of v
 - Thus, (u,v) is a back edge
- Thus, we can verify a DAG using DFS!

Topological Sort Example

- Precedence relations: an edge from x to y means one must be done with x before one can do y
- Intuition: can schedule task only when all of its subtasks have been scheduled



Topological Sort

- Sorting of a directed acyclic graph (DAG)
- A topological sort of a DAG is a linear ordering of all its vertices such that for any edge (u,v) in the DAG, u appears before v in the ordering
- The following algorithm topologically sorts a DAG

Topological-Sort(G)

- 1) call DFS(G) to compute finishing times f[v] for each vertex v
- 2) as each vertex is finished, insert it onto the front of a linked list
- 3) return the linked list of vertices
- The linked lists comprises a total ordering

Topological Sort

- Running time
 - depth-first search: O(V+E) time
 - insert each of the |V| vertices to the front of the linked list: O(1) per insertion
- Thus the total running time is O(V+E)

Topological Sort Correctness

- Claim: for a DAG, an edge $(u,v) \in E \Rightarrow f[u] > f[v]$
- When (*u*,*v*) explored, *u* is gray. We can distinguish three cases

```
 - v = \text{gray} 
 ⇒ (u,v) = \text{back edge (cycle, contradiction)} 
 - v = \text{white} 
 ⇒ v \text{ becomes descendant of } u 
 ⇒ v \text{ will be finished before } u 
 ⇒ f[v] < f[u] 
 - v = \text{black} 
 ⇒ v \text{ is already finished} 
 ⇒ f[v] < f[u]
```

The definition of topological sort is satisfied