CSE 3101: Introduction to the Design and Analysis of Algorithms

Instructor: Suprakash Datta (datta@cs.yorku.ca) ext 77875

Lectures: Tues (BC 215), 7-10 PM

Office hours: Wed 4-6 pm (CSEB 3043), or by

appointment.

Textbook: Cormen, Leiserson, Rivest, Stein. Introduction to Algorithms (3rd Edition)

Intractability

- Tractable and intractable problems
 - What is a "reasonable" running time?
 - NP problems, examples
 - NP-complete problems and polynomial reducability
- There are many practically important problems that have not yielded algorithms with sub-exponential worst case running time even with years of effort.

Traveling Salesman Problem

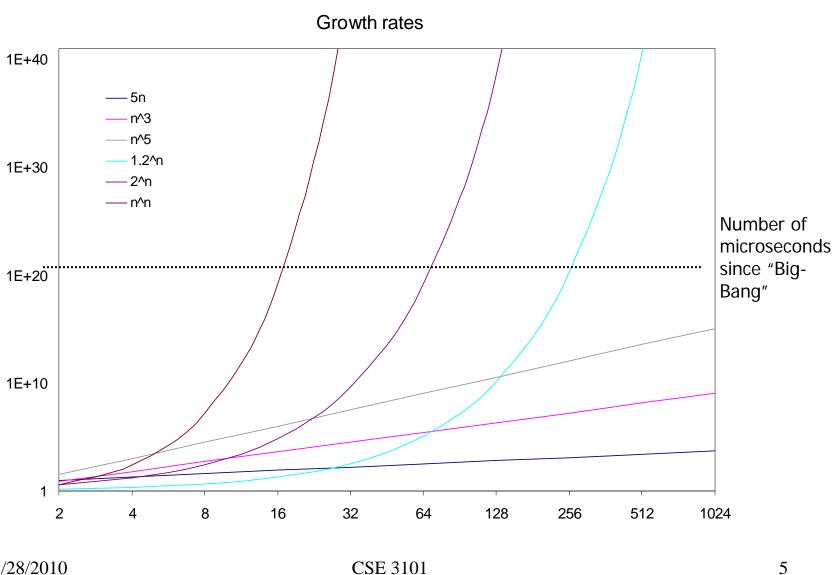
- A traveling salesperson needs to visit n cities
- Is there a route of at most d length? (decision problem)
 - Optimization-version asks to find a shortest cycle visiting all vertices once in a weighted graph



TSP Algorithms

- Naive solutions take n! time in worst-case,
 where n is the number of edges of the graph
- No polynomial-time algorithms are known
 - TSP is an NP-complete problem
- Longest Path problem between A and B in a weighted graph is also NP-complete
 - Remember the running time for the shortest path problem

Reasonable vs. Unreasonable



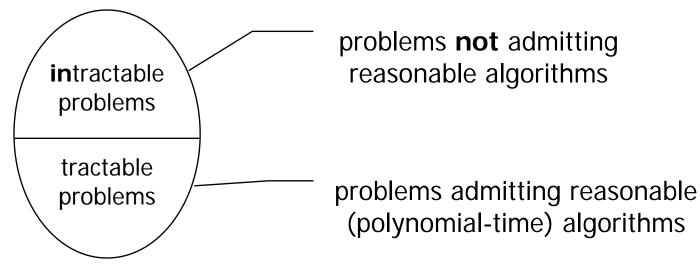
7/28/2010 CSE 3101

Reasonable vs. Unreasonable

Polynomial	function/	10	20	50	100	300
	n^2	1/10,000 second	1/2,500 second	1/400 second	1/100 second	9/100 second
	n^5	1/10 second	3.2 seconds	5.2 minutes	2.8 hours	28.1 days
Exponential	2^n	1/1000 second	1 second	35.7 years	400 trillion centuries	a 75 digit- number of centuries
	n^n	2.8 hours	3.3 trillion years	a 70 digit- number of centuries	a 185 digit- number of centuries	a 728 digit- number of centuries

Reasonable vs. Unreasonable

- "Good", reasonable algorithms
 - algorithms bound by a polynomial function n^k
 - Tractable problems
- "Bad", unreasonable algorithms
 - algorithms whose running time is above n^k
 - Intractable problems



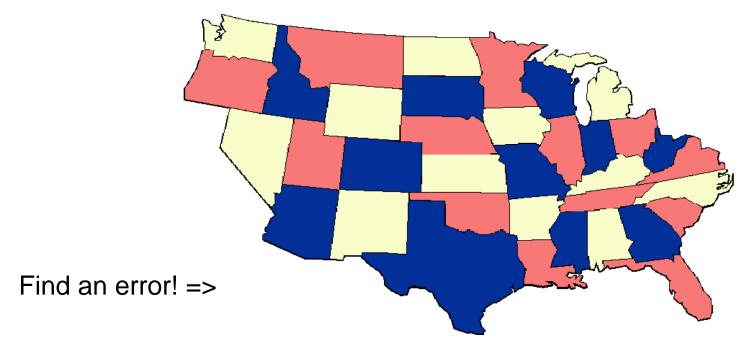
Counterpoints?

- Computers become faster every day
 - insignificant (a constant) compared to exp.
 running time
- Maybe the TSP is just one specific problem, we could simply ignore?
 - the TSP falls into a category of problems called NPC (NP complete) problems (~1000 problems)
 - all admit unreasonable solutions
 - not known to admit reasonable ones...

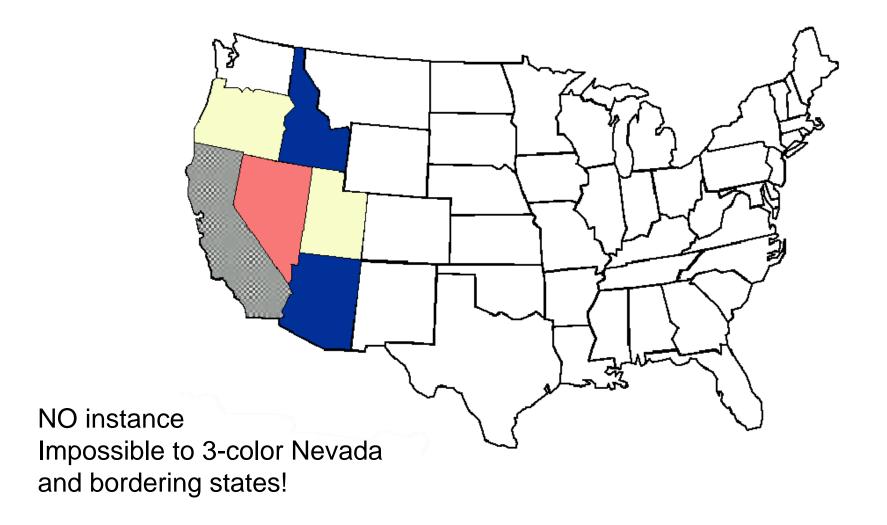
Coloring Problem (COLOR)

• 3-color

 given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color



Coloring Problem (2)



Coloring Problem (3)

- Any map can be 4-colored
- Maps that contain no points that are the junctions of an odd number of states can be 2-colored
- No polynomial algorithms are known to determine whether a map can be 3colored – it's an NP-complete problem

Determining Truth (SAT)

- Determine the truth or falsity of logical sentences in a simple logical formalism called propositional calculus
- Using the logical connectives (&-and, ∨-or, ~-not, →-implies) we compose expressions such as the following

$$\sim$$
(E \rightarrow F) & (F \vee (D \rightarrow \sim E))

- The algorithmic problem calls for determining the satisfiability of such sentences
 - e.g., E = true, D and F = false

Determining Truth (SAT)

- Exponential time algorithm on n =the number of distinct elementary assertions $(\Theta(2^n))$
- Best known solution, problem is in NP-complete class!

CLIQUE

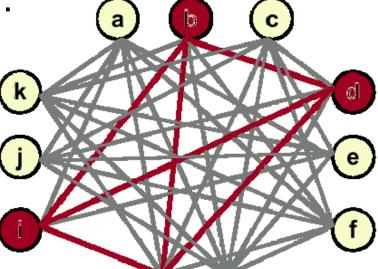
 Given n people and their pairwise relationships, is there a group of s people such that every pair in the group knows each other

- people: a, b, c, ..., k

- friendships: (a,e), (a,f),...

- clique size: s = 4?

– YES, {b, d, i, h} is a certificate!



14

Friendship Graph

7/28/2010

Definition of P:

 Set of all decision problems solvable in polynomial time on a deterministic Turing machine

Examples:

- SHORTEST PATH: Is the shortest path between u and v in a graph shorter than k?
- RELPRIME: Are the integers x and y relatively prime?
 - YES: (x, y) = (34, 39).
- MEDIAN: Given integers x_1 , ..., x_n , is the median value < M?
 - YES: $(M, x_1, x_2, x_3, x_4, x_5) = (17, 2, 5, 17, 22, 104)$

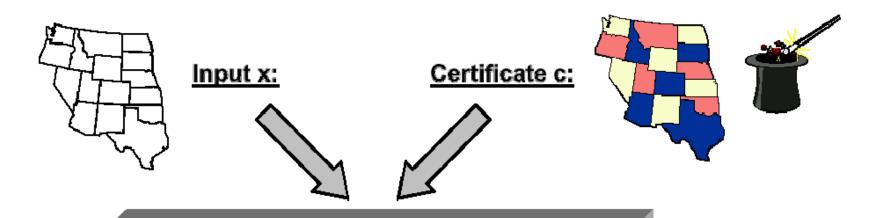
P(2)

 P is the set of all decision problems solvable in polynomial time on REAL computers.

Short Certificates

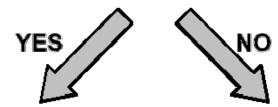
- To find a solution for an NPC problem, we seem to be required to try out exponential amounts of partial solutions
- Failing in extending a partial solution requires backtracking
- However, once we found a solution, convincing someone of it is easy, if we keep a proof, i.e., a certificate
- The problem is finding an answer (exponential), but not verifying a potential solution (polynomial)

Short Certificates (2)



Verifier:

- 1. Check that x and c describe same map.
- 2. Count number of distinct colors in c.
- 3. Check all pairs of adjacent states.



3-COLOR is in NP.

x is a YES instance

no conclusion

On Magic Coins and Oracles

- Assume we use a magic coin in the backtracking algorithm
 - whenever it is possible to extend a partial solutions in
 1 ways, we toss a magic coin (next city, next truth assignment, etc.)
 - the outcome of this "act" determines further actions –
 we use magical insight, supernatural powers!
- Such algorithms are termed "non-deterministic"
 - they guess which option is better, rather than employing some deterministic procedure to go through the alternatives

NP

- Definition of NP:
 - Set of all decision problems solvable in polynomial time on a NONDETERMINISTIC Turing machine
 - Definition important because it links many fundamental problems
- Useful alternative definition
 - Set of all decision problems with efficient verification algorithms
 - efficient = polynomial number of steps on deterministic TM
 - Verifier: algorithm for decision problem with extra input

NP (2)

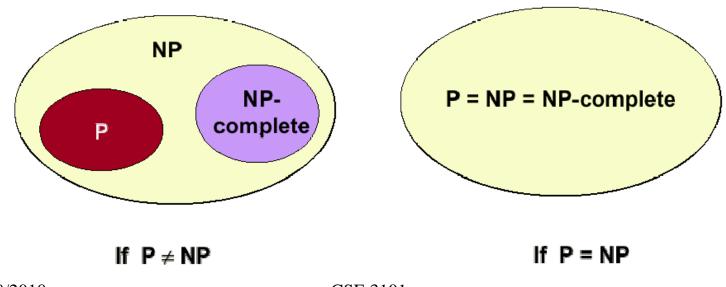
- NP = set of decision problems with efficient verification algorithms
- Why doesn't this imply that all problems in NP can be solved efficiently?
 - BIG PROBLEM: need to know certificate ahead of time
 - real computers can simulate by guessing all possible certificates and verifying
 - naïve simulation takes exponential time unless you get "lucky"

NP-Completeness

- Informal definition of NP-hard:
 - A problem with the property that if it can be solved efficiently, then it can be used as a subroutine to solve any other problem in NP efficiently
- NP-complete problems are NP problems that are NP-hard
 - "Hardest computational problems" in NP

The Main Question

- Does P = NP?
 - Is the original DECISION problem as easy as VERIFICATION?
- Most important open problem in theoretical computer science. Clay institute of mathematics offers one-million dolar prize!



The Main Question (2)

- If P=NP, then:
 - Efficient algorithms for 3- COLOR, TSP, and factoring.
 - Cryptography is impossible on conventional machines
 - Modern banking system will collapse
- If no, then:
 - Can't hope to write efficient algorithm for TSP
 - see NP- completeness
 - But maybe efficient algorithm still exists for testing the primality of a number – i.e., there are some problems that are NP, but not NP-complete

The Main Question (3)

- Probably no, since:
 - Thousands of researchers have spent four decades in search of polynomial algorithms for many fundamental NP-complete problems without success
 - Consensus opinion: P ≠ NP
- But maybe yes, since:
 - No success in proving P ≠ NP either

Dealing with NP-Completeness

- Hope that a worst case doesn't occur
 - Complexity theory deals with worst case behavior.
 The instance(s) you want to solve may be "easy"
 - TSP where all points are on a line or circle
 - 13,509 US city TSP problem solved (Cook et. al., 1998)
- Change the problem
 - Develop a heuristic, and hope it produces a good solution.
 - Design an approximation algorithm: algorithm that is guaranteed to find a high- quality solution in polynomial time
 - active area of research, but not always possible
- Keep trying to prove P = NP.

The Big Picture

- It is not known whether NP problems are tractable or intractable
- But, there exist provably intractable problems
 - Even worse there exist problems with running times far worse than exponential!
- More bad news: there are provably noncomputable (undecidable) problems
 - There are no (and there will not ever be!!!)
 algorithms to solve these problems

Proving NP-completeness: the start...

- The World's first NP-complete problem
- SAT is NP-complete (Cook-Levin, 196x)

Proving NP-Completeness (2)

- Each NPC problem's faith is tightly coupled to all the others (complete set of problems)
- Finding a polynomial time algorithm for one NPC problem would automatically yield a polynomial time algorithm for all NP problems
- Proving that one NP-complete problem has an exponential lower bound woud automatically proove that all other NP-complete problems have exponential lower bounds

7/28/2010 CSE 3101 29

NP-Completeness (3)

- How can we prove such a statement?
- Polynomial time reduction!
 - given two problems
 - it is an algorithm running in polynomial time that reduces one problem to the other such that
 - given input X to the first and asking for a yes/no answer
 - we transform X into input Y to the second problem such that its answer matches the answer of the first problem

Reduction Example

- Reduction is a general technique for showing that one problem is harder (easier) than another
 - For problems A and B, we can often show:
 if A can be solved efficiently, then so can B
 - In this case, we say B reduces to A (B is "easier" than A, or, B cannot be "worse" than A)

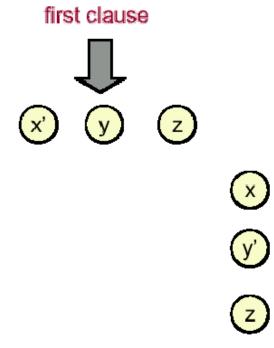
Reduction Example (2)

SAT reduces to CLIQUE

- Given any input to SAT, we create a corresponding input to CLIQUE that will help us solve the original SAT problem
- Specifically, for a SAT formula with K clauses, we construct a CLIQUE input that has a clique of size K if and only if the original Boolean formula is satisfiable
- If we had an efficient algorithm for CLIQUE, we could apply our transformation, solve the associated CLIQUE problem, and obtain the yes/no answer for the original SAT problem

Reduction Example (3)

- SAT reduces to CLIQUE
 - Associate a person to each variable occurrence in each clause



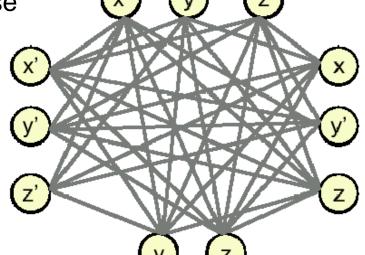
$$(x' + y + z) (x + y' + z) (y + z) (x' + y' + z')$$

Reduction Example (4)

- SAT reduces to CLIQUE
 - Associate a person to each variable occurrence in each clause
 - "Two people" know each other except if:

• they come from the same clause

 they represent t and t' for some variable t



Boolean formula:

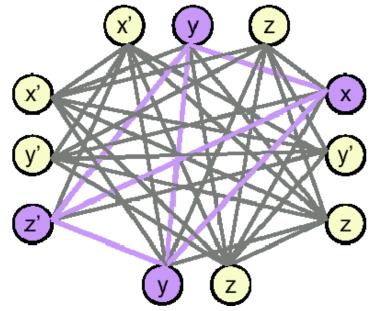
$$(x' + y + z) (x + y' + z) (y + z) (x' + y' + z')$$

Reduction Example (5)

- SAT reduces to CLIQUE
 - Two people know each other except if:
 - they come from the same clause
 - they represent t and t' for some variable t
 - Clique of size 4 ⇒ satisfiable assignment
 - set variable in clique to "true"
 - (x, y, z) = (true, true, false)

Boolean formula:

$$(x' + y + z) (x + y' + z) (y + z) (x' + y' + z')$$



Reduction Example (6)

- SAT reduces to CLIQUE
 - Two people know each other except if:
 - they come from the same clause
 - they represent t and t' for some variable t
 - Clique of size 4 ⇒ satisfiable assignment

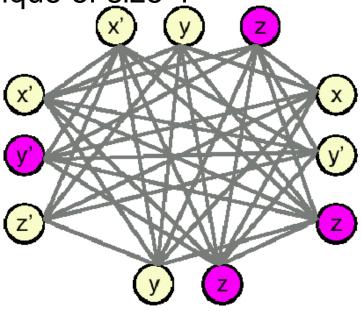
Satisfiable assignment ⇒ clique of size 4

• (x, y, z) = (false, false, true)

 choose one true literal from each clause

Boolean formula:

$$(x' + y + z) (x + y' + z) (y + z) (x' + y' + z')$$



CLIQUE is NP-complete

- CLIQUE is NP-complete
 - CLIQUE is in NP
 - SAT is in NP-complete
 - SAT reduces to CLIQUE
- Hundreds of problems can be shown to be NP-complete that way...

Summary

- Thousands of problems have been proved to be NP-complete
 - "at least as hard as any other problem in NP"
 - If you find a polynomial time solution to any NPcomplete problem, P=NP
- They are believed to be intractable (i.e., no polynomial time algorithms exist)
- Since this has not been proved, it is possible that P=NP.
- In real life one looks for an approximation algorithm or a different problem formulation...