
6/1/2010 CSE 3101 Lecture 1 1

Instructor: Suprakash Datta (datta[at]cse.yorku.ca) ext 77875

Lectures: Tues, BC 215, 7–10 PM

Office hours: Wed 4-6 pm (CSEB 3043), or by
appointment.

Textbook: Cormen, Leiserson, Rivest, Stein.
Introduction to Algorithms (3nd Edition)

CSE 3101: Introduction to the Design and
Analysis of Algorithms

1. Covered basics of a simple design technique (Divide-
and-conquer) – Ch. 2 of the text.

2. Next, more sorting algorithms.

Next…

Sorting

Switch from design paradigms to applications.
Sorting and order statistics (Ch 6 – 9).

First:
Heapsort
–Heap data structure and priority queue ADT
Quicksort
–a popular algorithm, very fast on average

Why Sorting?

“When in doubt, sort” – one of the principles of
algorithm design. Sorting used as a subroutine in
many of the algorithms:
– Searching in databases: we can do binary search

on sorted data
– A large number of computer graphics and

computational geometry problems
– Closest pair, element uniqueness

• A large number of sorting algorithms are developed
representing different algorithm design techniques.

• A lower bound for sorting Ω(n log n) is used to prove
lower bounds of other problems.

Sorting algorithms so far

• Insertion sort, selection sort
– Worst-case running time Θ(n2); in-place

• Merge sort
– Worst-case running time Θ(n log n), but requires

additional memory Θ(n); (WHY?)

Selection sort

• A takes Θ(n) and B takes Θ(1): Θ(n2) in total
• Idea for improvement: use a data structure, to do

both A and B in O(lg n) time, balancing the work,
achieving a better trade-off, and a total running time
O(n log n).

Selection-Sort(A[1..n]):
For i → n downto 2

A: Find the largest element among A[1..i]
B: Exchange it with A[i]

Selection-Sort(A[1..n]):
For i → n downto 2

A: Find the largest element among A[1..i]
B: Exchange it with A[i]

Heap sort

• Binary heap data structure A
– array
– Can be viewed as a nearly complete binary tree

• All levels, except the lowest one are completely filled

– The key in root is greater or equal than all its
children, and the left and right subtrees are again
binary heaps

• Two attributes
– length[A]
– heap-size[A]

Heap sort

1423978101516
10987654321

Parent (i)
return i/2

Left (i)
return 2i

Right (i)
return 2i+1

Heap property:

A[Parent(i)] ≥ A[i]

Level: 3 2 1 0

Heap sort

• Notice the implicit tree links; children of node i
are 2i and 2i+1

• Why is this useful?
– In a binary representation, a multiplication/division

by two is left/right shift
– Adding 1 can be done by adding the lowest bit

Heapify

• i is index into the array A
• Binary trees rooted at Left(i) and Right(i) are heaps
• But, A[i] might be smaller than its children, thus

violating the heap property
• The method Heapify makes A a heap once more by

moving A[i] down the heap until the heap property is
satisfied again

Heapify

Heapify Example

Heapify: Running time

• The running time of Heapify on a subtree of size
n rooted at node i is
– determining the relationship between elements: Θ(1)
– plus the time to run Heapify on a subtree rooted at one

of the children of i, where 2n/3 is the worst-case size of
this subtree.

– Alternatively
• Running time on a node of height h: O(h)

() (2 /3) (1) () (log)T n T n T n O n≤ +Θ ⇒ =

Building a Heap

• Convert an array A[1...n], where n = length[A], into a
heap

• Notice that the elements in the subarray A[(n/2 +
1)...n] are already 1-element heaps to begin with!

Building a heap

Building a Heap: Analysis

• Correctness: induction on i, all trees rooted at
m > i are heaps

• Running time: less than n calls to Heapify = n
O(lg n) = O(n lg n)

• Good enough for an O(n lg n) bound on
Heapsort, but sometimes we build heaps for
other reasons, would be nice to have a tight
bound
– Intuition: for most of the time Heapify works on

smaller than n element heaps

Building a Heap: Analysis (2)

• Definitions
– height of node: longest path from node to leaf
– height of tree: height of root

– time to Heapify = O(height of subtree rooted at i)
– assume n = 2k – 1 (a complete binary tree k = lg n)

()
()

lg lg

2
1 1

1 1 1() 2 3 ... 1
2 4 8

1/ 21 since 2
2 2 1 1/ 2

()

n n

i i
i i

n n nT n O k

i iO n

O n

      

= =

+ + + = + ⋅ + ⋅ + + ⋅ 
 
 

= + ⋅ = =   − 
=

∑ ∑

Building a Heap: Analysis (3)

• How? By using the following "trick"

• Therefore Build-Heap time is O(n)

()

()

0

1
2

1

2
1

1

1 if 1 //differentiate
1

1 //multiply by
1

1 //plug in
21

1/ 2 2
2 1/ 4

i

i

i

i

i

i

i
i

x x
x

i x x
x

xi x x
x

i

∞

=

∞
−

=

∞

=

∞

=

= <
−

⋅ =
−

⋅ = =
−

= =

∑

∑

∑

∑

Heap sort

The total running time of heap sort is O(n lg n)
+ Build-Heap(A) time, which is O(n)

O()n

Heap sort

Heap Sort: Summary

• Heap sort uses a heap data structure to
improve selection sort and make the running
time asymptotically optimal

• Running time is O(n log n) – like merge sort,
but unlike selection, insertion, or bubble sorts

• Sorts in place – like insertion, selection or
bubble sorts, but unlike merge sort

Priority Queues

• A priority queue is an ADT(abstract data type)
for maintaining a set S of elements, each with
an associated value called key

• A PQ supports the following operations
– Insert(S,x) insert element x in set S (S←S∪{x})
– Maximum(S) returns the element of S with the

largest key
– Extract-Max(S) returns and removes the element

of S with the largest key

Priority Queues (2)

• Applications:
– job scheduling shared computing resources (Unix)
– Event simulation
– As a building block for other algorithms

• A Heap can be used to implement a PQ

Priority Queues(3)

• Removal of max takes constant time on top of
Heapify (lg)nΘ

Priority Queues(4)

• Insertion of a new element
– enlarge the PQ and propagate the new element

from last place ”up” the PQ
– tree is of height lg n, running time: (lg)nΘ

Priority Queues(5)

Insert a new element: 15

Quick Sort

• Characteristics
– sorts ”almost” in place, i.e., does not require an

additional array, like insertion sort
– Divide-and-conquer, like merge sort
– very practical, average sort performance O(n log

n) (with small constant factors), but worst case
O(n2) [CAVEAT: this is true for the CLRS version]

Quick Sort – the main idea

• To understand quick-sort, let’s look at a high-
level description of the algorithm

• A divide-and-conquer algorithm
– Divide: partition array into 2 subarrays such that

elements in the lower part <= elements in the
higher part

– Conquer: recursively sort the 2 subarrays
– Combine: trivial since sorting is done in place

Partitioning

• Linear time partitioning procedure

Partition(A,p,r)
01 x←A[r]
02 i←p-1
03 j←r+1
04 while TRUE
05 repeat j←j-1
06 until A[j] ≤x
07 repeat i←i+1
08 until A[i] ≥x
09 if i<j
10 then exchange A[i]↔A[j]
11 else return j

1058231961217
i ji j

1758231961210

ji

1712823196510

ji

1712192386510

ij

1712192386510

≤ X=10 ≤

Quick Sort Algorithm

• Initial call Quicksort(A, 1, length[A])

Quicksort(A,p,r)
01 if p<r
02 then q←Partition(A,p,r)
03 Quicksort(A,p,q)
04 Quicksort(A,q+1,r)

Analysis of Quicksort

• Assume that all input elements are distinct
• The running time depends on the distribution

of splits

Best Case

• If we are lucky, Partition splits the array
evenly () 2 (/ 2) ()T n T n n= +Θ

Using the median as a pivot

• The recurrence in the previous slide works
out, BUT……

Q: Can we find the median in linear-time?
A: YES! But we need to wait until we get to

Chapter 8…..

Worst Case

• What is the worst case?
• One side of the parition has only one element

1

1

2

() (1) (1) ()
(1) ()

()

()

()

n

k

n

k

T n T T n n
T n n

k

k

n

=

=

= + − + Θ
= − +Θ

= Θ

= Θ

= Θ

∑

∑

Worst Case (2)

Worst Case (3)

• When does the worst case appear?
– input is sorted
– input reverse sorted

• Same recurrence for the worst case of
insertion sort

• However, sorted input yields the best case for
insertion sort!

Analysis of Quicksort

• Suppose the split is 1/10 : 9/10
() (/10) (9 /10) () (log)!T n T n T n n n n= + + Θ = Θ

An Average Case Scenario

• Suppose, we alternate
lucky and unlucky
cases to get an
average behavior

() 2 (/ 2) () lucky
() (1) () unlucky

we consequently get
() 2((/ 2 1) (/ 2)) ()

2 (/ 2 1) ()
(log)

L n U n n
U n L n n

L n L n n n
L n n

n n

= +Θ
= − +Θ

= − +Θ +Θ
= − +Θ
= Θn

1 n-1

(n-1)/2 (n-1)/2

()nΘ

(n-1)/2+1 (n-1)/2

n ()nΘ

An Average Case Scenario (2)

• How can we make sure that we are usually
lucky?
– Partition around the ”middle” (n/2th) element?
– Partition around a random element (works well in

practice)
• Randomized algorithm

– running time is independent of the input ordering
– no specific input triggers worst-case behavior
– the worst-case is only determined by the output of

the random-number generator

Randomized Quicksort

• Assume all elements are distinct
• Partition around a random element
• Randomization is a general tool to improve

algorithms with bad worst-case but good
average-case complexity

Next: Lower bounds

Q: Can we beat the Ω(n log n) lower bound for
sorting?

A: In general no, but in some special cases
YES!

Ch 7: Sorting in linear time

Let’s prove the Ω(n log n) lower bound.

Lower bounds

• What are we counting?
Running time? Memory? Number of times a specific
operation is used?

• What (if any) are the assumptions?
• Is the model general enough?

Here we are interested in lower bounds for the WORST
CASE. So we will prove (directly or indirectly):
for any algorithm for a given problem, for each n>0,
there exists an input that make the algorithm take
Ω(f(n)) time. Then f(n) is a lower bound on the worst
case running time.

Comparison-based algorithms

Finished looking at comparison-based sorts.
Crucial observation: All the sorts work for any set of

elements – numbers, records, objects,……
Only require a comparator for two elements.

#include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size, int(*compar)(const void *, const
void *));

DESCRIPTION: The qsort() function sorts an array with nmemb elements of size
size. The base argument points to the start of the array.

The contents of the array are sorted in ascending order according to a
comparison function pointed to by compar, which is called with two
arguments that point to the objects being compared.

Comparison-based algorithms

• The algorithm only uses the results of comparisons,
not values of elements (*).

• Very general – does not assume much about what
type of data is being sorted.

• However, other kinds of algorithms are possible!
• In this model, it is reasonable to count #comparisons.
• Note that the #comparisons is a lower bound on the

running time of an algorithm.

(*) If values are used, lower bounds proved in this
model are not lower bounds on the running time.

Lower bound for a simpler problem

Let’s start with a simple problem.

Minimum of n numbers

Minimum (A)
1. min = A[1]
2. for i = 2 to length[A]
3. do if min >= A[i]
4. then min = A[i]
5. return min

Can we do this with
fewer comparisons?

We have seen very different
algorithms for this problem. How
can we show that we cannot do
better by being smarter?

Lower bounds for the minimum

Claim: Any comparison-based algorithm for finding the
minimum of n keys must use at least n-1 comparisons.

Proof: If x,y are compared and x > y, call x the winner.
Any key that is not the minimum must have won at least
one comparison. WHY?

Each comparison produces exactly one winner and at
most one NEW winner.

⇒at least n-1 comparisons have to be made.

Points to note

Crucial observations: We proved a claim about ANY
algorithm that only uses comparisons to find the
minimum. Specifically, we made no assumptions about

1. Nature of algorithm.
2. Order or number of comparisons.
3. Optimality of algorithm
4. Whether the algorithm is reasonable – e.g. it could be a

very wasteful algorithm, repeating the same
comparisons.

On lower bound techniques

Unfortunate facts:
Lower bounds are usually hard to prove.
Virtually no known general techniques – must try ad hoc

methods for each problem.

Lower bounds for comparison-based sorting

• Trivial: Ω(n) – every element must take part in a
comparison.

• Best possible result – Ω(n log n) comparisons, since
we already know several O(n log n) sorting algorithms.

• Proof is non-trivial: how do we reason about all possible
comparison-based sorting algorithms?

The Decision Tree Model

• Assumptions:
– All numbers are distinct (so no use for ai = aj)
– All comparisons have form ai ≤ aj (since ai ≤ aj, ai ≥

aj, ai < aj, ai > aj are equivalent).
• Decision tree model

– Full binary tree
– Ignore control, movement, and all other operations,

just use comparisons.
– suppose three elements < a1, a2, a3> with instance

<6,8,5>.

Example: insertion sort (n=3)

A[2]: A[3] A[1]: A[3]

A[1]: A[2]

A[1]: A[3] A[2]: A[3]

>

>

>>

>

≤

≤

≤

≤

≤

A[1]A[2]A[3]

A[1]A[3]A[2] A[3]A[1]A[2] A[2]A[3]A[1]

A[2]A[1]A[3]

A[3]A[2]A[1]

The Decision Tree Model

2:3

1:2

2:3

1:3

1:3<1,2,3>

<1,3,2> <3,1,2>

<2,1,3>

<2,3,1> <3,2,1>

≤

≤ ≤

≤

>

>

>

>

>

Internal node i:j indicates comparison between ai and aj.
Leaf node <π(1), π(2), π(3)> indicates ordering aπ(1)≤ aπ(2)≤ aπ(3).
Path of bold lines indicates sorting path for <6,8,5>.
There are total 3!=6 possible permutations (paths).

≤

Summary

Only consider comparisons
Each internal node = 1 comparison
Start at root, make the first comparison

- if the outcome is ≤ take the LEFT branch
- if the outcome is > - take the RIGHT branch
Repeat at each internal node

Each LEAF represents ONE correct ordering

Intuitive idea

Subset S1 of S
s.t. x[i] ≤ x[j]

Subset S2 of S
s.t. x[i] > x[j]

S
x[i] : x[j]

≤ >

S is a set of permutations

Lower bound for the worst case

• Claim: The decision tree must have at least n! leaves.
WHY?

• worst case number of comparisons= the height of the
decision tree.

• Claim: Any comparison sort in the worst case needs Ω(n
log n) comparisons.

• Suppose height of a decision tree is h, number of paths
(i,e,, permutations) is n!.

• Since a binary tree of height h has at most 2h leaves,

n! ≤ 2h , so h ≥ lg (n!) ≥ Ω(n lg n)

Lower bounds: check your understanding

Can you prove that any algorithm that searches for an
element in a sorted array of size n must have running time
Ω(lg n) ?

