
5/25/2010 CSE 3101 Lecture 1 122

1. Covered basics of a simple design technique (Divide-
and-conquer) – Ch. 2 of the text.

2. Next, Strassen’s algorithm
3. Later: more design and conquer algorithms: MergeSort.

Solving recurrences and the Master Theorem.

Next… Similar idea to multiplication in N, C

• Divide and conquer approach provides
unexpected improvements

Naïve matrix multiplication

SimpleMatrixMultiply (A,B)
1. N ← A.rows
2. C ← CreateMatrix(n,n)
3. for i ← 1 to n
4. for j ← 1 to n
5. C[i,j] ← 0
6. for k ← 1 to n
7. C[i,j] ← C[i,j] + A[i,k]*B[k,j]
8. return C

• Argue that the running time is θ(n3)

First attempt and Divide & Conquer

Divide A,B into 4 n/2 x n/2 matrices
• C11 = A11 B11 + A12B21
• C12 = A11 B12 + A12B22
• C21 = A21 B11 + A22B21
• C22 = A21 B12 + A22B22

Simple Recursive implementation. Running time is
given by the following recurrence.

• T(1) = C, and for n>1
• T(n) = 8T(n/2) + θ(n2)
• θ(n3) time-complexity

Strassen’s algorithm

Avoid one multiplication (details on page 80)
(but uses more additions)

Recurrence:
• T(1) = C, and for n>1
• T(n) = 7T(n/2) + θ(n2)

• How can we solve this?
• Will see that T(n) = θ(nlg 7), lg 7 =2.8073….

The maximum-subarray problem

• Given an array of integers, find a contiguous
subarray with the maximum sum.

• Very naïve algorithm:

• Brute force algorithm:

• At best, θ(n2) time complexity

Can we do divide and conquer?

• Want to use answers from left and right half
subarrays.

• Problem: The answer may not lie in either!

• Key question: What information do we need
from (smaller) subproblems to solve the big
problem?

• Related question: how do we get this
information?

A divide and conquer algorithm

Algorithm in Ch 4.1:

Recurrence:
• T(1) = C, and for n>1
• T(n) = 2T(n/2) + θ(n)

• T(n) = θ(n log n)

More divide and conquer : Merge Sort

• Divide: If S has at least two elements (nothing needs
to be done if S has zero or one elements), remove all
the elements from S and put them into two
sequences, S1 and S2 , each containing about half of
the elements of S. (i.e. S1 contains the first n/2
elements and S2 contains the remaining n/2
elements).

• Conquer: Sort sequences S1 and S2 using Merge
Sort.

• Combine: Put back the elements into S by merging
the sorted sequences S1 and S2 into one sorted
sequence

Merge Sort: Algorithm

Merge-Sort(A, p, r)
if p < r then

q←(p+r)/2
Merge-Sort(A, p, q)
Merge-Sort(A, q+1, r)
Merge(A, p, q, r)

Merge-Sort(A, p, r)
if p < r then

q←(p+r)/2
Merge-Sort(A, p, q)
Merge-Sort(A, q+1, r)
Merge(A, p, q, r)

Merge(A, p, q, r)
Take the smallest of the two topmost elements of

sequences A[p..q] and A[q+1..r] and put into the
resulting sequence. Repeat this, until both sequences
are empty. Copy the resulting sequence into A[p..r].

Merge(A, p, q, r)
Take the smallest of the two topmost elements of

sequences A[p..q] and A[q+1..r] and put into the
resulting sequence. Repeat this, until both sequences
are empty. Copy the resulting sequence into A[p..r].

Merge Sort: example Merge Sort: example

Merge Sort: example Merge Sort: example

Merge Sort: example Merge Sort: example

Merge Sort: example Merge Sort: example

Merge Sort: example Merge Sort: example

Merge Sort: example Merge Sort: example

Merge Sort: example Merge Sort: example

Merge Sort: example Merge Sort: example

Merge Sort: example Merge Sort: example

Merge Sort: example Merge Sort: example

Merge Sort: example Merge Sort: example

Merge Sort: summary

• To sort n numbers
– if n=1 done!
– recursively sort 2 lists of

numbers n/2 and n/2
elements

– merge 2 sorted lists in Θ(n)
time

• Strategy
– break problem into similar

(smaller) subproblems
– recursively solve

subproblems
– combine solutions to answer

Recurrences

• Running times of algorithms with Recursive calls
can be described using recurrences

• A recurrence is an equation or inequality that
describes a function in terms of its value on smaller
inputs

Example: Merge Sort

(1) if 1
()

2 (/ 2) () if 1
n

T n
T n n n

Θ =
=  +Θ >

solving_trivial_problem if 1
()

num_pieces (/ subproblem_size_factor) dividing combining if 1
n

T n
T n n

=
=  + + >

Solving recurrences

• Repeated substitution method
– Expanding the recurrence by substitution and

noticing patterns
• Substitution method

– guessing the solutions
– verifying the solution by the mathematical

induction
• Recursion-trees
• Master method

– templates for different classes of recurrences

Repeated Substitution Method

• Let’s find the running time of merge sort (let’s
assume that n=2b, for some b).

1 if 1
()

2 (/ 2) if 1
n

T n
T n n n

=
=  + >

()
()()

2

2

3

lg

() 2 / 2 substitute
2 2 / 4 / 2 expand

2 (/ 4) 2 substitute
2 (2 (/ 8) / 4) 2 expand

 2 (/8) 3 observe the pattern
() 2 (/ 2)

2 (/) lg lg

i i

n

T n T n n
T n n n

T n n
T n n n

T n n
T n T n in

T n n n n n n n

= +
= + +

= +
= + +

= +

= +
= + = +

Repeated Substitution Method

• The procedure is straightforward:
– Substitute
– Expand
– Substitute
– Expand
– …
– Observe a pattern and write how your expression

looks after the i-th substitution
– Find out what the value of i (e.g., lg n) should be to

get the base case of the recurrence (say T(1))
– Insert the value of T(1) and the expression of i into

your expression

Substitution method

3 3

3

3

3

3

Solve () 4 (/ 2)
1) Guess that () (), i.e., that of the form
2) Assume () for / 2 and
3) Prove () by induction

() 4 (/ 2) (recurrence)
4c(n/2) (ind. hypoth.)

 (si
2

T n T n n
T n O n T cn

T k ck k n
T n cn

T n T n n
n

c n n

= +

=

≤ ≤

≤
= +
≤ +

= +

3 3

3

3

0 0

mplify)

 (rearrange)
2

 if 2 and 1 (satisfy)
Thus () ()!
Subtlety: M ust choose big enough to handle

() (1) for for some

ccn n n

cn c n
T n O n

c
T n n n n

 = − − 
 

≤ ≥ ≥

=

= Θ <

Substitution method

• Achieving tighter bounds

2

2

2

2

2

Try to show () ()
Assume ()

() 4 (/ 2)
4 (/ 2)

 for no choice of 0.

T n O n
T k ck

T n T n n
c n n
cn n
cn c

=

≤
= +
≤ +
= +
≤ >

Substitution method

The problem: We could not rewrite the equality

as:

in order to show the inequality we wanted
• Sometimes to prove inductive step, try to

strengthen your hypothesis
– T(n) ≤ (answer you want) - (something > 0)

2() + (something positive)T n cn=

2()T n cn≤

Substitution method

• Corrected proof: the idea is to strengthen the
inductive hypothesis by subtracting lower-order
terms!

2
1 2

2
1 2
2

1 2
2

1 2 2
2

1 2 2

Assume () for
() 4 (/ 2)

4((/ 2) (/ 2))
2

()
 if 1

T k c k c k k n
T n T n n

c n c n n
c n c n n
c n c n c n n
c n c n c

≤ − <
= +
≤ − +
= − +
= − − −
≤ − ≥

Recursion Tree

• A recursion tree is a convenient way to visualize what
happens when a recurrence is iterated

• Construction of a recursion tree

2() (/ 4) (/ 2)T n T n T n n= + +

Recursion Tree Recursion Tree

() (/3) (2 /3)T n T n T n n= + +

Master Method
• The idea is to solve a class of recurrences that have

the form

• a ≥ 1 and b > 1, and f is asymptotically positive!
• Abstractly speaking, T(n) is the runtime for an

algorithm and we know that
– a subproblems of size n/b are solved recursively,

each in time T(n/b)
– f(n) is the cost of dividing the problem and

combining the results. In merge-sort

() (/) ()T n aT n b f n= +

() 2 (/ 2) ()T n T n n= + Θ

Master method

Split problem into a parts at logbn
levels. There are leaveslog logb bn aa n=

Master method

• Number of leaves:
• Iterating the recurrence, expanding the tree yields

– The first term is a division/recombination cost (totaled across
all levels of the tree)

– The second term is the cost of doing all subproblems of
size 1 (total of all work pushed to leaves)

log logb bn aa n=
2 2

2 2

log 1 log 1 log

log 1
log

0

() () (/)
() (/) (/)
() (/) (/) ...

(/) (1)
Thus,

() (/) ()

b b b

b
b

n n n

n
aj j

j

T n f n aT n b
f n af n b a T n b
f n af n b a T n b
a f n b a T

T n a f n b n

− −

−

=

= +
= + +
= + + +

+ +

= +Θ∑

logb an

Master method intuition

• Three common cases:
– Running time dominated by cost at leaves
– Running time evenly distributed throughout the

tree
– Running time dominated by cost at root

• Consequently, to solve the recurrence, we
need only to characterize the dominant term

• In each case compare with()f n log()b aO n

Master method Case 1

• for some constant
– f(n) grows polynomially (by factor)

slower than

• The work at the leaf level dominates
– Summation of recursion-tree levels
– Cost of all the leaves
– Thus, the overall cost

log() ()b af n O n ε−=

logb an

0ε >
nε

log()b aO n
log()b anΘ

log()b anΘ

Master method Case 2

•
– and are asymptotically the same

• The work is distributed equally
throughout the tree
– (level cost) × (number of levels)

log() (lg)b af n n n= Θ
()f n

log() (lg)b aT n n n= Θ

logb an

Master method Case 3

• for some constant
– Inverse of Case 1
– f(n) grows polynomially faster than
– Also need a regularity condition

• The work at the root dominates

log() ()b af n n ε+= Ω

logb an

0 01 and 0 such that (/) () c n af n b cf n n n∃ < > ≤ ∀ >

() (())T n f n= Θ

0ε >

Master Theorem Summarized
• Given a recurrence of the form

• The master method cannot solve every recurrence
of this form; there is a gap between cases 1 and 2,
as well as cases 2 and 3

() (/) ()T n aT n b f n= +
()

()
()

()
()
()

log

log

log

log

log
0

1. ()

()

2. ()

() lg

3. () and (/) (), for some 1,

() ()

b

b

b

b

b

a

a

a

a

a

f n O n

T n n

f n n

T n n n

f n n af n b cf n c n n

T n f n

−ε

+ε

=

⇒ = Θ

= Θ

⇒ = Θ

= Ω ≤ < >

⇒ = Θ

Using the Master Theorem

• Extract a, b, and f(n) from a given recurrence
• Determine
• Compare f(n) and asymptotically
• Determine appropriate MT case, and apply
• Example merge sort

logb an

() ()

2log log 2

log

() 2 (/ 2) ()
2, 2; ()

Also () ()

Case 2 () lg lg:

b

b

a

a

T n T n n
a b n n n n

f n n

T n n n n n

= +Θ

= = = = = Θ
= Θ

⇒ =Θ = Θ

logb an

Examples

()

2

3

log 1

log 9

2

() (/2) 1
1, 2; 1

also () 1, () (1)
() (lg)

(

Case 2:

Cas

) 9 (/3)
9, 3;

() , () () with 1

()e 1:

T n T n
a b n
f n f n

T n n

T n T n n
a b
f n n f n O n

T n n

−ε

= +

= = =
= =Θ

⇒ =Θ

= +
= =

= = ε=

⇒ =Θ

Binary-search(A, p, r, s):
q←(p+r)/2
if A[q]=s then return q
else if A[q]>s then

Binary-search(A, p, q-1, s)
else Binary-search(A, q+1, r, s)

Binary-search(A, p, r, s):
q←(p+r)/2
if A[q]=s then return q
else if A[q]>s then

Binary-search(A, p, q-1, s)
else Binary-search(A, q+1, r, s)

Examples

4

4

2

log 3 0.793

log 3

log 2 1

() 3 (/ 4) lg
3, 4;

() lg , () () with 0.2

Regularity condition
(/) 3(/ 4) l

Case

g(/ 4) (3 / 4) lg () for 3 / 4
() (lg)

() 2 (/ 2) lg
2, 2;

3:

T n T n n n
a b n n
f n n n f n n

af n b n n n n cf n c
T n n n

T n T n n n
a b n n
f

+ε

= +

= = =

= = Ω ε ≈
⇒

= ≤ = =
= Θ

= +

= = =
1

1

() lg , () () with ?
also l

neither Case 3 nor Case 2!
g / lg

n n n f n n
n n n n

+ε= = Ω ε

=
⇒

Examples

()

2

3

log 4 2

3 2

3

3 3

3 3

() 4 (/ 2)
4, 2;

 () ; () ()

()

Checking the regularity condition
4 (/

Cas

2) ()
4 / 8

/ 2
3 / 4

e 3:

1

T n T n n
a b n n
f n n f n n

T n n

f n cf n
n cn
n cn
c

= +

= = =

= = Ω

⇒ = Θ

≤

≤

≤
= <

A quick review of logarithms

Properties to remember
1. log (ab) = log a + log b
2. log (a/b) = log a - log b
3. log (1/a) = - log a
4. log an = n log a
5. a = 2log

2
a

It follows that :
1. nn = 2 n log

2
n

2. 2 n n = 2 n + log
2

n

3. n log
2

n = 2 (log
2

n)2

1. Covered basics of a simple design technique (Divide-
and-conquer) – Ch. 4 of the text.

2. Next, more sorting algorithms.

Next…

