Next...

. Covered basics of a simple design technique (Divide-
and-conquer) — Ch. 2 of the text.

Next, Strassen’s algorithm

3. Later: more design and conquer algorithms: MergeSort.
Solving recurrences and the Master Theorem.

5/25/2010 CSE 3101 Lecture 1 122

Similar idea to multiplication in N, C

» Divide and conquer approach provides
unexpected improvements

Naive matrix multiplication

SimpleMatrixMultiply (A,B)
1.N « Arows

2. C « CreateMatrix(n,n)

3.fori<1ton

4. forje1ton

5. Clijl<0

6. forke«1ton

7. CIi,jl < CIivjl + Ali,k]*BIk,j]

8. return C

+ Argue that the running time is 8(n3)

First attempt and Divide & Conquer

Divide A,B into 4 n/2 x n/2 matrices
© Gy = Aqq By + AgpByy
* Ci2= Ay Byt ApBy
* Cyy = Ay By + AgByy
* Cp= Ay Bip + AyByy

Simple Recursive implementation. Running time is
given by the following recurrence.

» T(1)=C, and for n>1
- T(n) = 8T(n/2) + B(n?)
* 6(nd) time-complexity

Strassen’s algorithm

Avoid one multiplication (details on page 80)
(but uses more additions)

Recurrence:
» T(1) =C, and for n>1
* T(n) = 7T(n/2) + B(n?)

» How can we solve this?
« Will see that T(n) =6(n'97),Ig 7 =2.8073....

The maximum-subarray problem

» Given an array of integers, find a contiguous
subarray with the maximum sum.

» Very naive algorithm:

+ Brute force algorithm:

- At best, 6(n2) time complexity

Can we do divide and conquer?

Want to use answers from left and right half
subarrays.

Problem: The answer may not lie in either!

Key question: What information do we need
from (smaller) subproblems to solve the big
problem?

Related question: how do we get this
information?

A divide and conquer algorithm

Algorithm in Ch 4.1:

Recurrence:
» T(1) = C, and for n>1
« T(n) =2T(n/2) + B(n)

* T(n)=06(nlog n)

More divide and conquer : Merge Sort

Divide: If S has at least two elements (nothing needs
to be done if S has zero or one elements), remove all
the elements from S and put them into two
sequences, S; and S, , each containing about half of
the elements of S. (i.e. S, contains the first [n/2]
elements and S, contains the remaining [n2]
elements).

Conquer: Sort sequences S, and S, using Merge
Sort.

Combine: Put back the elements into S by merging
the sorted sequences S, and S, into one sorted
sequence

Merge Sort: Algorithm

Merge-Sort (A, p, r)
if p < r then
g« (ptr) /2
Merge-Sort (A, p, q)
Merge-Sort (A, g+l, r)
Merge (A, p, 4, 1)

Merge (A, p, q, r)

Take the smallest of the two topmost elements of
sequences A[p..q] and A[q+l..r] and put into the
resulting sequence. Repeat this, until both sequences
are empty. Copy the resulting sequence into A[p..r].

Merge Sort: example

(\’5 24 63 45 L7 31 96 519)

Merge Sort: example

Merge Sort: example

Merge Sort: example

Merge Sort: example

96 £
4}

™

Merge Sort: example

Merge Sort: example

Merge Sort: example

96 5‘-9)

Merge Sort: example

Merge Sort: example

Merge Sort: example

Merge Sort: example

Merge Sort: example

Merge Sort: example

Merge Sort: example

Merge Sort: example

{

Merge Sort: example

Merge Sort: example

(gty a5 64 Si) (I 7~ 31 96 SID)

Merge Sort: example

(B2 45 64 \wj)

Merge Sort: example

(=« a5 64 35))

~.

) ((I 7 31 50)())

N

/
> OC D
o

—
AN

C

&

35

Merge Sort: example

(= 45 64 ss) (17 s 50 96)

7

Merge Sort: example

Merge Sort: summary
» To sort n numbers

— if n=1 done! i
— recursively sort 2 lists of 52 & 6 3 2%
numbers [#/2]and Ln/2] e
1 L] 2 4 6 3 2 &
elements A o
Pl - S
— merge 2 sorted lists in ©(n) i s z s 8 3 z @
time SN A
1 5 2 4 6 3 2 L]
+ Strategy v o
— break problem into similar I B N
(smaller) subproblems : Y = }"{a
— recursively solve T —
subproblems e e S e e e U

— combine solutions to answer

Recurrences
» Running times of algorithms with Recursive calls
can be described using recurrences

» Arecurrence is an equation or inequality that
describes a function in terms of its value on smaller
inputs

Example: Merge Sort
T(n)= { solving_trivial problem ifn=1

num_pieces 7'(n/subproblem_size_factor) + dividing + combining ifn>1

T(m = (1) ifn=1
D=12rm12)+00) ifn>1

Solving recurrences

» Repeated substitution method

— Expanding the recurrence by substitution and
noticing patterns

» Substitution method
— guessing the solutions

— verifying the solution by the mathematical
induction

» Recursion-trees
» Master method
— templates for different classes of recurrences

Repeated Substitution Method

 Let’s find the running time of merge sort (let’s
assume that n=2b, for some b).
1 ifn=1
T(n)= .
{2T(n/2)+n ifn>1
T(n) = 2T(n/2)+n substitute
= 2(27(n/4)+n/2)+n expand
= 2°T(n/4)+2n substitute
= 2*(2T(n/8)+n/4)+2n expand
= 2°T(n/8)+3n observe the pattern
T(n) = 2T(n/2)+in
= 2%'T(n/n)+nlgn=n+nlgn

Repeated Substitution Method

» The procedure is straightforward:
— Substitute
— Expand
— Substitute
— Expand

— Observe a pattern and write how your expression
looks after the i-th substitution

— Find out what the value of i (e.g., Ig n) should be to
get the base case of the recurrence (say T(1))

— Insert the value of T(1) and the expression of i into
your expression

Substitution method
Solve T'(n)=4T(n/2)+n
1) Guess that T(n) = O(n’), i.e., that T of the form cn’
2) Assume T(k) < ck® fork <n/2 and
3) Prove T(n) < cn’ by induction
T(n) 4T (n/2)+ n (recurrence)
4¢(n/2)* + n (ind. hypoth.)

A1

%nl +n (simplify)

= cn’ —[%n} - n] (rearrange)

< en’ife>2 and n > 1 (satisfy)
Thus T'(n) = O(n*)!
Subtlety: Must choose ¢ big enough to handle

T(n)=0(1) for n < n, for some n,

Substitution method

+ Achieving tighter bounds

Try to show T'(n) = O(n”)
Assume T'(k) < ck?

T(n) = 4T(n/2)+n
< 4e(n/2)Y +n
= o’ +n
< ¢n?® for no choice of ¢ > 0.

Substitution method

The problem: We could not rewrite the equality

T(n) = cn®+ (something positive)
as:
T(n)<cn®
in order to show the inequality we wanted
« Sometimes to prove inductive step, try to
strengthen your hypothesis

— T(n) < (answer you want) - (something > 0)

Substitution method

+ Corrected proof: the idea is to strengthen the
inductive hypothesis by subtracting lower-order
terms!

Assume T'(k) < clk2 —c,k fork<n

T(n) 4T(n/2)+n
Ac,(n/2)* —c,(n/2))+n

2
on” =2c,n+n

IAN I

on’ —c,n—(cn—n)

IN

) .
cn” —cnife, 21

Recursion Tree

» Arecursion tree is a convenient way to visualize what
happens when a recurrence is iterated

« Construction of a recursion tree

T(n)=T(n/4)+T(n/2)+n

Recursion Tree

. o2
Ar// \\\ -
1Y Ry 5.2
() () —
P 2 P P2 2 a5
FEIR 1,y TR [23,2
\1¢") ") ")) 256
PR
/ \‘ geoimetiic
Y .}
3 (35,2
LT A
ST
&)

Recursion Tree

T(n)y=T(n/3)+T(2n/3)+n

Master Method
» The idea is to solve a class of recurrences that have

the form
T(n)y=aT(n/b)+ f(n)

+ a=1andb>1,andf is asymptotically positive!

+ Abstractly speaking, T(n) is the runtime for an
algorithm and we know that
— a subproblems of size n/b are solved recursively,
each in time T(n/b)

— f(n) is the cost of dividing the problem and
combining the results. In merge-sort

T(n)=2T(n/2)+O(n)

7N\
/ AN
/ N
n Mo 5 o,
3 3
/£ Y / AY
log, . n VAN /N
/ AN / N\
” pi Zn ETS — M
9 o 9 9
/AN /AN VAN /AN
Total: Of Iz m}y
Master method
A= > sk
N g - @,
< >
Fiwb) Finby Jiwb} —————— afin'b)
~ & %L){ VAR
b, s ,fs»:-m»n ;mn FUlb 1 FeB Yy i Fiet b méf: [hei;i—rnﬁmh)
\;;\»w 0 O 1
AR AR AR ARE AR
g)z‘noz‘ne(‘uevc‘uomaz‘neéne&uéu ee‘uemeh’}—.:e(,,""“")
—
Togn 1
Split problem into a parts at log,n Tt 0,) + Z,,,w:

levels. There are ¢"®" = n"*%“ leaves

Master method

* Number of leaves:
« lterating the recurrence, expanding the tree yields

log, n log,a
a®"'=n®

T(n) = f(n)+aT(n/b)
= f(n)+af (n/b)+a’T(n/b*)
= f(n)+af (n/b)+a’T(n/b*)+...
+a"" 7 f (n/ b + @ T (1)
Thus,
T(n)= 10(2, ' f(n/b’)+O(n"")
Jj=0
— The first term is a division/recombination cost (totaled across
all levels of the tree)
— The second term is the cost of doing all 72
size 1 (total of all work pushed to leaves)

logya
* Subproblems of

Master method intuition

» Three common cases:
— Running time dominated by cost at leaves

— Running time evenly distributed throughout the
tree

— Running time dominated by cost at root

« Consequently, to solve the recurrence, we
need only to characterize the dominant term

« In each case compare f(n) with O(n'**)

Master method Case 1

* f(n)=0(n"=*) for some constant &>0
— f(n) grows polynomially (by factor %)
slower than ;loz@

+ The work at the leaf level dominates
— Summation of recursion-tree levels O(n"°%)
— Cost of all the leaves @(n"**)
— Thus, the overall cost ©(n'*")

Master method Case 2

* f)=0n"*"1gn)
—f(n)and 1" are asymptotically the same

* The work is distributed equally
throughout the tree T'(n) =0(n'"*“ Ign)

— (level cost) x (number of levels)

Master method Case 3

* f(n) = Q(n"=**)for some constant & >0
— Inverse of Case 1
— fin) grows polynomially faster than n'e
— Also need a regularity condition
Je <1 and n, > 0 such that af (n/b) < c¢f (n) VYn>n,

¢ The work at the root dominates

T(n)=0(f(n))

Master Theorem Summarized
+ Given arecurrence of the form 7'(n) =aT(n/b)+ f(n)

L fm=0(n""")
=T(m)=0(n"")
2. f(n)=0(n"")
=T(n)=0(n""1gn)
3. fn)=Q(n"™ ") and af (n/b) < cf (n), for some c <1,n>n,
=T(n)=0(f(n))
» The master method cannot solve every recurrence

of this form; there is a gap between cases 1 and 2,
as well as cases 2 and 3

Using the Master Theorem

» Extract a, b, and f(n) from a given recurrence
. log, a
+ Determine n oz, a
+ Compare f(n) and 1 & asymptotically
» Determine appropriate MT case, and apply
+ Example merge sort
T(n)=2T(n/2)+0(n)
a=2,b=2 n"" =n"*=n=0(n)
Also f(n) =0(n)
= Case 2: T(n)=©(n"*"Ign)=0(nlgn)

Examples

T(n)=T(n/2)+1

a:Lb:Z; nlog:l:] Binary-search (A, p, r, s):

. ¢ (ptr) /2
alsof(m) =1, f(n) =&X1)
=Case 2: T(n)=06XIgn)

if A[g]l=s then return g

else if A[g]>s then
Binary-search (A, p, g-1, s)

else Binary-search(A, g+l, r, s)

T(n)=9T(n/3)+n

a=9,b=3;

Sm)=n, f(n)=00""*) withe=1
=Case 1: T(n):@)(nz)

Examples

T(n)=3T(n/4)+nlgn

a=3,b=4; n"= ="

f(n)=nlgn, f(n)=Q(n"**"*) with e = 0.2

= Case 3:

Regularity condition

af (n/b)=3(n/4)lg(n/4)<(3/4)nlgn=cf(n) forc=3/4
T(n)=0O(nlgn)

T(n)=2T(n/2)+nlgn
a=2,b=2; "= =n'
f(n)=nlgn, f(n)=Qn"") with £?

alsonlgn/n' =lgn

2

= neither Case 3 nor Case 2!

Examples

T(n)=4T(n/2)+n’
a=4,b=2; n* =n’
Sfmy=n’; f(n)=Q(n*)
= Case 3: T(n):@(nl)

Checking the regularity condition

A quick review of logarithms
Properties to remember
1. log (ab) =log a + log b
2. log (a/b) =log a-logb
3. log (1/a)=-log a
4. loga"=nloga
5 a= 2Iogza

It follows that :

1. nh=2n Iogzn

2. 2nn=2n+logzn
3. nlog,n =2 (log, n)?

4f(n/2)<cf(n)
4n’ /8 < cn’
n’/2<en’
c=3/4<1
Next...
1. Covered basics of a simple design technique (Divide-

and-conquer) — Ch. 4 of the text.

2. Next, more sorting algorithms.

