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1. Covered basics of a simple design technique (Divide-
and-conquer) – Ch. 2 of the text. 

2. Next, Strassen’s algorithm
3. Later: more design and conquer algorithms: MergeSort. 

Solving recurrences and the Master Theorem.

Next… Similar idea to multiplication in N, C

• Divide and conquer approach provides 
unexpected improvements 

Naïve matrix multiplication

SimpleMatrixMultiply (A,B)
1. N ← A.rows
2. C ← CreateMatrix(n,n)
3. for i ← 1 to n
4.   for j ← 1 to n
5.       C[i,j] ← 0
6.       for k ← 1 to n
7.             C[i,j] ← C[i,j] + A[i,k]*B[k,j]
8. return C

• Argue that the running time is θ(n3) 

First attempt and Divide & Conquer

Divide A,B into 4 n/2 x n/2 matrices
• C11 = A11 B11 + A12B21
• C12 = A11 B12 + A12B22
• C21 = A21 B11 + A22B21
• C22 = A21 B12 + A22B22

Simple Recursive implementation. Running time is 
given by the following recurrence.

• T(1) = C, and for n>1
• T(n) = 8T(n/2) + θ(n2) 
• θ(n3) time-complexity

Strassen’s algorithm

Avoid one multiplication (details on page 80)
(but uses more additions)

Recurrence:
• T(1) = C, and for n>1
• T(n) = 7T(n/2) + θ(n2)

• How can we solve this?
• Will see that T(n) = θ(nlg 7), lg 7  =2.8073….

The maximum-subarray problem

• Given an array of integers, find a contiguous 
subarray with the maximum sum.

• Very naïve algorithm:

• Brute force algorithm:

• At best, θ(n2) time complexity



Can we do divide and conquer?

• Want to use answers from left and right half 
subarrays.

• Problem: The answer may not lie in either!

• Key question: What information do we need 
from (smaller) subproblems to solve the big 
problem?

• Related question: how do we get this 
information?

A divide and conquer algorithm

Algorithm in Ch 4.1:

Recurrence:
• T(1) = C, and for n>1
• T(n) = 2T(n/2) + θ(n)

• T(n) = θ(n log n)

More divide and conquer : Merge Sort

• Divide: If S has at least two elements (nothing needs 
to be done if S has zero or one elements), remove all 
the elements from S and put them into two 
sequences, S1 and S2 , each containing about half of 
the elements of S. (i.e. S1 contains the first n/2
elements and S2 contains the remaining n/2
elements).

• Conquer: Sort sequences S1 and S2 using Merge 
Sort.

• Combine: Put back the elements into S by merging 
the sorted sequences S1 and S2 into one sorted 
sequence

Merge Sort: Algorithm

Merge-Sort(A, p, r)
if p < r then

q←(p+r)/2
Merge-Sort(A, p, q)
Merge-Sort(A, q+1, r)
Merge(A, p, q, r)

Merge-Sort(A, p, r)
if p < r then

q←(p+r)/2
Merge-Sort(A, p, q)
Merge-Sort(A, q+1, r)
Merge(A, p, q, r)

Merge(A, p, q, r)
Take the smallest of the two topmost elements of 

sequences A[p..q] and A[q+1..r] and put into the 
resulting sequence. Repeat this, until both sequences 
are empty. Copy the resulting sequence into A[p..r]. 

Merge(A, p, q, r)
Take the smallest of the two topmost elements of 

sequences A[p..q] and A[q+1..r] and put into the 
resulting sequence. Repeat this, until both sequences 
are empty. Copy the resulting sequence into A[p..r]. 

Merge Sort: example Merge Sort: example
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Merge Sort: summary

• To sort n numbers
– if n=1 done!
– recursively sort 2 lists of 

numbers n/2 and n/2
elements

– merge 2 sorted lists in Θ(n) 
time

• Strategy
– break problem into similar 

(smaller) subproblems
– recursively solve 

subproblems
– combine solutions to answer

Recurrences

• Running times of algorithms with Recursive calls
can be described using recurrences

• A recurrence is an equation or inequality that 
describes a function in terms of its value on smaller 
inputs

Example: Merge Sort
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Solving recurrences

• Repeated substitution method
– Expanding the recurrence by substitution and 

noticing patterns
• Substitution method

– guessing the solutions
– verifying the solution by the mathematical 

induction
• Recursion-trees
• Master method

– templates for different classes of recurrences

Repeated Substitution Method

• Let’s find the running time of merge sort (let’s 
assume that n=2b, for some b).
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Repeated Substitution Method

• The procedure is straightforward:
– Substitute
– Expand
– Substitute 
– Expand
– …
– Observe a pattern and write how your expression 

looks after the i-th substitution
– Find out what the value of i (e.g., lg n) should be to 

get the base case of the recurrence (say T(1))
– Insert the value of T(1) and the expression of i into 

your expression

Substitution method
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Substitution method

• Achieving tighter bounds
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Substitution method

The problem: We could not rewrite the equality

as:

in order to show the inequality we wanted
• Sometimes to prove inductive step, try to 

strengthen your hypothesis
– T(n) ≤ (answer you want) - (something > 0)

2( ) + (something positive)T n cn=

2( )T n cn≤

Substitution method

• Corrected proof: the idea is to strengthen the 
inductive hypothesis by subtracting lower-order 
terms!
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Recursion Tree

• A recursion tree is a convenient way to visualize what 
happens when a recurrence is iterated

• Construction of a recursion tree

2( ) ( / 4) ( / 2)T n T n T n n= + +



Recursion Tree Recursion Tree

( ) ( /3) (2 /3)T n T n T n n= + +

Master Method
• The idea is to solve a class of recurrences that have 

the form

• a ≥ 1 and b > 1, and f  is asymptotically positive!
• Abstractly speaking, T(n) is the runtime for an 

algorithm and we know that
– a subproblems of size n/b are solved recursively, 

each in time T(n/b)
– f(n) is the cost of dividing the problem and 

combining the results. In merge-sort 
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Master method

Split problem into a parts at logbn
levels. There are leaveslog logb bn aa n=

Master method

• Number of leaves:
• Iterating the recurrence, expanding the tree yields

– The first term is a division/recombination cost (totaled across 
all levels of the tree)

– The second term is the cost of doing all subproblems of 
size 1 (total of all work pushed to leaves)
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Master method intuition

• Three common cases:
– Running time dominated by cost at leaves
– Running time evenly distributed throughout the 

tree
– Running time dominated by cost at root

• Consequently, to solve the recurrence, we 
need only to characterize the dominant term

• In each case compare      with( )f n log( )b aO n



Master method Case 1

• for some constant
– f(n) grows polynomially (by factor     ) 

slower than  

• The work at the leaf level dominates
– Summation of recursion-tree levels
– Cost of all the leaves
– Thus, the overall cost

log( ) ( )b af n O n ε−=

logb an

0ε >
nε

log( )b aO n
log( )b anΘ

log( )b anΘ

Master method Case 2

•
– and        are asymptotically the same

• The work is distributed equally 
throughout the tree
– (level cost) × (number of levels)

log( ) ( lg )b af n n n= Θ
( )f n

log( ) ( lg )b aT n n n= Θ

logb an

Master method Case 3

• for some constant
– Inverse of Case 1
– f(n) grows polynomially faster than  
– Also need a regularity condition 

• The work at the root dominates
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logb an
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Master Theorem Summarized
• Given a recurrence of the form 

• The master method cannot solve every recurrence 
of this form; there is a gap between cases 1 and 2, 
as well as cases 2 and 3
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Using the Master Theorem

• Extract a, b, and f(n) from a given recurrence
• Determine 
• Compare f(n) and             asymptotically 
• Determine appropriate MT case, and apply
• Example merge sort
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Binary-search(A, p, r, s):
q←(p+r)/2
if A[q]=s then return q
else if A[q]>s then

Binary-search(A, p, q-1, s)
else Binary-search(A, q+1, r, s)  

Binary-search(A, p, r, s):
q←(p+r)/2
if A[q]=s then return q
else if A[q]>s then

Binary-search(A, p, q-1, s)
else Binary-search(A, q+1, r, s)   
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4

4

2

log 3 0.793

log 3

log 2 1

( ) 3 ( / 4) lg
3, 4;  

( ) lg ,  ( ) ( ) with 0.2

Regularity condition
( / ) 3( / 4) l

Case 

g( / 4) (3 / 4) lg ( ) for 3 / 4
( ) ( lg )

( ) 2 ( / 2) lg
2, 2;  

3:

T n T n n n
a b n n
f n n n f n n

af n b n n n n cf n c
T n n n

T n T n n n
a b n n
f

+ε

= +

= = =

= = Ω ε ≈
⇒

= ≤ = =
= Θ

= +

= = =
1

1

( ) lg ,  ( ) ( ) with ?
also l

neither Case 3 nor Case 2!
g / lg

n n n f n n
n n n n

+ε= = Ω ε

=
⇒

Examples

( )

2

3

log 4 2

3 2

3

3 3

3 3

( ) 4 ( / 2)
4, 2;  

 ( ) ;  ( ) ( )

( )

Checking the regularity condition
4 ( /

Cas

2) ( )
4 / 8

/ 2
3 / 4

e 3: 

1

T n T n n
a b n n
f n n f n n

T n n

f n cf n
n cn
n cn
c

= +

= = =

= = Ω

⇒ = Θ

≤

≤

≤
= <

A quick review of logarithms

Properties to remember
1. log (ab) = log a + log b
2. log (a/b) = log a - log b
3. log (1/a) = - log a
4. log an = n log a
5. a = 2log

2 
a

It follows that :
1. nn = 2 n log

2
n

2. 2 n n = 2 n + log
2

n

3. n log
2

n = 2 (log
2

n)2

1. Covered basics of a simple design technique (Divide-
and-conquer) – Ch. 4 of the text. 

2. Next,  more sorting algorithms.

Next…


