CSE 3101: Introduction to the Design and
Analysis of Algorithms

Instructor: Suprakash Datta (datta[at]cse.yorku.ca) ext 77875
Lectures: Tues, BC 215, 7-10 PM

Office hours: Wed 4-6 pm (CSEB 3043), or by
appointment.

Textbook: Cormen, Leiserson, Rivest, Stein.
Introduction to Algorithms (39 Edition)

6/22/2010 CSE GHE 3éxture 1 1

So far....

Finished looking at lower bounds and linear sorts.

Next: Memoization
-- Optimization problems - Dynamic programming
— A scheduling problem
— Matrix multiplication optimization
— Longest Common Subsequence
— Principles of dynamic programming

6/22/2010 CSE 3101

Divide and Conquer

« Divide and conquer method:

— Divide: If the input size is too large to deal with in a
straightforward manner, divide the problem into
two or more disjoint subproblems

— Conquer: Use divide and conqguer recursively to
solve the subproblems

— Combine: Take the solutions to the subproblems
and “merge” these solutions into a solution for the
original problem

6/22/2010 CSE 3101 3

Divide and Conquer(2)

» E.g., MergeSort Me"?i‘f)oztg’*ihg;] "

g« (p+r)/2
Merge-Sort(A, p, Q)

Merge-Sort(A, g+1, r)
Merge(A, p, g, I)

 The subproblems
are independent.

6/22/2010 CSE 3101

Fibonacci Numbers

* I:n: |:n-l-l_ |:n-2
e F,=0,F,; =1
-0,1,1,2,3,5,8,13,21, 34 ...
o Straightforward recursive procedure is slow!
 Why? How slow?
* Let's draw the recursion tree

6/22/2010 CSE 3101

Fibonacci Numbers (2)

6= 5
/\
& e
F(3)/\ /\ /\ /\
F@A NN RN
F(D/\F(O)

We keep calculating the same value over and over!

6/22/2010 CSE 3101 6

Fibonacci Numbers (3)

« How many summations are there?
« Golden ratio F 1++/5

n+1 ~ ¢ —
e Thus F »1.6" F, 2
e Our recursion tree has only Os and 1s as leaves, thus
we have »1.6" summations

* Running time is exponential!

~1.61803...

6/22/2010 CSE 3101 7

Fibonacci Numbers (4)

* We can calculate F, in linear time by remembering
solutions to the solved subproblems — memoization

e Compute solution in a bottom-up fashion
« Trade space for time!

— In this case, only two values need to be remembered at
any time (less than the depth of recursion stack!)

6/22/2010

Fibonacci(n)
Fo<0O

CSE 3101 8

Lessons

We were able to reduce redundant computation
by evaluating the recurrence in a certain order,
and remembering previous values.

This Is called memoization (no typo). This is
used very often in dynamic programming.

6/22/2010 CSE 3101 9

Test your understanding

The following encoding is used to encode text:
a:l, b:2, ..., y:25, z:26.

Unfortunately this is not a prefix code!

So parsing is ambiguous:

Given 1125: possible decodings are

aabe, aay, ale, kbe, ky

Problem: Given a string of digits, find the number of
valid decodings.

6/22/2010 CSE 3101

10

Optimization Problems

 We have to choose one solution out of many
— a one with the optimal (minimum or
maximum) value.

e A solution exhibits a structure

— It consists of a string of choices that were made —
what choices have to be made to arrive at an
optimal solution?

 The algorithms computes the optimal value
plus, If needed, the optimal solution

6/22/2010 CSE 3101 11

A simple problem: optimizing an itinerary

We want to go from city O to city n using buses.

The road goes through cities 1,2,..., n-1.

The cost of going from city i to city | Is c;.

Assume monotonic paths only (all edges go forward).
What is the minimum cost of going from O to n?

Exponential number of paths possible

(2 choices at each station — may or may not change
buses there, n stations)

Important property: The optimal cost of going from (say)

2 to 9 has no relation with the same from 11 to 16.

6/22/2010 CSE 3101

12

Optimization Problems

 We have to choose one solution out of many
— a one with the optimal (minimum or
maximum) value.

e A solution exhibits a structure

— It consists of a string of choices that were made —
what choices have to be made to arrive at an
optimal solution?

 The algorithms computes the optimal value
plus, If needed, the optimal solution

6/22/2010 CSE 3101 13

A simple problem: optimizing an itinerary

We want to go from city O to city n using buses.

The road goes through cities 1,2,..., n-1.

The cost of going from city i to city | Is c;.

Assume monotonic paths only (all edges go forward).
What is the minimum cost of going from O to n?

Exponential number of paths possible

(2 choices at each station — may or may not change
buses there, n stations)

Important property: The optimal cost of going from (say)

2 to 9 has no relation with the same from 11 to 16.

6/22/2010 CSE 3101

14

Optimizing an itinerary

We want to make local choices and remember them
systematically. Let T(j) be the minimum cost of going
from city O to city . So T(n) is the answer.

What can we say about T(j)?

Suppose someone tells you the best last choice (go
from i to n). Does it help?

Suppose you also know the best way to go from O to I.

Then we can glue the solutions together and get the

optimal solution!

Maybe we should not expect so much ©

6/22/2010 CSE 3101

15

Optimizing an itinerary

Note that T(i) is a smaller subproblem than T(n).

When did T(i) go from a

cost to a subproblem?

Perhaps we can solve T(i) recursively?
Then we know T(n) = c;, +T(i)
Paraphrased dialogue from Die Hard lII:

(Samuel Jackson): And who will help you? ©Greatlite lesson?

(SJ’s kids, in chorus): no one!

How can you prevent assuming that you know the best
last choice?:

Take the minimum over all last choice possibilities!

6/22/2010 CSE 3101 16

Optimizing an itinerary: putting it all together

T(j) = min [c,; +T(K)], k<].
Why does this help at all?

Can systematically compute T());

Hopefully results in a polynomial-time algorithm

Q: What's the right way to compute T(j)?
A: What's easy? Well T(1), since it equals ¢,

Start from T(1). Then do T(2). Keep going until you reach
T(n). Each entry uses the recursion above.

6/22/2010 CSE 3101 17

Optimizing an itinerary: getting solutions
T(n) = minimum cost of going from O to n.
What is the sequence of steps?

Need to remember more information;
Specifically the sequence of choices made.

T(J) = min [c,; +T(K)], k<.

C(jJ) = arg min k

What's the last choice? C(n).
What’s the next one? C(C(n)) !

The next one is C(C(C(n))). The next one is
C(C(C(C(n)))). Keep going until you hit O.

6/22/2010 CSE 3101

18

Optimizing an itinerary: running time

T(n) = minimum cost of going from O to n.
What is the time required to compute T(n), assuming
T(1) through T(n-1) are known?

Computing T(j) takes ©(j) time.
Computing C(j) takes O(1) time.
So the algorithm takes ®(n?) time.

6/22/2010 CSE 3101

19

Next: an activity selection problem

 Two assembly lines, A, B,, each with n stations.
e Each job must complete go through A, or B, for each I.

 Different costs for going from A, to B,,;, A, to A,,;, B;to B,,;,
B, to A,,, startto A, start to B,, A, to exit, B, to exit.

Exponential number of paths possible (2 choices, n stations)

Agalin, suppose you know the first choice. Does that help?

6/22/2010 CSE 3101 20

statton §;; station§;, stationd, ; station §; 4 station §, , ; station§, ,

v completed
auto

enters .
exis

station §; | station§,, siation§,; station S, station §, ,,_; station S, ,

Figure 15.1 A manufacturing problem to find the fastest way through a factory. There are two
assembly lines, cach with n stations; the jth station on line i is denoted §;, j and the assembly time
at that station is a; ;. An automobile chassis enters the factory, and goes onto line i (where i = 1
or 2), taking ¢; time. After going through the jth station on a line, the chassis goes on to the (j + 1)st
station on either line. There is no transfer cost if it stays on the same line, but it takes time ¢; ; to
transfer to the other line after station §; ;. After exiting the ath station on a line, it takes x; time for
the completed auto to exit the factory. The problem is to determine which stations to choose from
line 1 and which to choose from line 2 in order to minimize the total time through the factory for one
auto.

station §; ; station§,, station§;, stationS,, station 8,5 station §; 4

assembly line |

- completed
chassis T
sl exXiIts

station S, , * station 51. S5 3 .j station S g
(a)
j o1 2 3 4 5 6 j 2 3 4 5 6
e e R -
(b)

Figure 15.2 (a) An instance of the assembly-line problem with costs e, @; ;, #;. j»and x; indicated.
The heavily shaded path indicates the fastest way through the factory. (b) The values of f;[f], fe
[;[j], and I for the instance in part (a).

Again think recursively

Express the cost of the remainder recursively.

Now assume you do not know the first choice!

Define f,[j] to be the cost of going to the " station
on assembly line 1 from the start. Define f,[|]
similarly for assembly line 2. Then

Bl =e +a;; ifj=1
=min {f;[J-1]+a, ;, i[-1]+t,;,+a, j} ifj>1

Similarly, for f,[j].

Finally

= min {f,[n]+x,, Fnl+x,}

6/22/2010 CSE 3101 23

Constructing the solution

As before, we need some extra storage and record
keeping to remember the choices made.

PRINT-STATIONS (/, n)
| <« [*
print “line i *, station ™ n
for j < n downto 2
doi < [;[/j]
print “line " *, station ” j — 1

D B W o -

6/22/2010 CSE 3101 24

Running time

LO] =e +ag, i) =1
= min {f[|-1]+a, , L1+t +a) 1f)>1

Similarly, for f,[j]. Finally

f* = min {f;[n]+x,, fo[n]+x,}

How much time does it take to compute

Constant amount of work to compute f,[j] , f,[],
for each j, and for f".

Total running time A(n).

6/22/2010 CSE 3101 25

Multiplying Matrices

« Two matrices, A—nx m matrixand B—m x k
matrix, can be multiplied to get C with dimensions
n X K, using nmk scalar multiplications

(282) gy \ [)
a,, a,, (bllbzblsj: i Cop o Ci,j :Zai,l 'bl,j
\ &1 A3y e oo e e) 1=1

 Problem: Compute a product of many matrices
efficiently

o Matrix multiplication Is associative:
(AB)C = A(BC)

6/22/2010 CSE 3101 26

Multiplying Matrices (2)

* The parenthesization matters

e Consider A x B x C x D, where
—~Ais30x1,Bis1x40,Cis40x 10, Dis 10 x 25

e Costs:
— (AB)C)D = 1200 + 12000 + 7500 = 20700
— (AB)(CD) = 1200 + 10000 + 30000 = 41200
— A((BC)D) = 400 + 250 + 750 = 1400

 We need to optimally parenthesize

A xA x...xA, where A 1Isad._, xd. matrix

6/22/2010 CSE 3101 27

Multiplying Matrices (3)

e Let M(l,)) be the minimum number of |
multiplications necessary to compute | | A
k=i

« Key observations

— The outermost parenthesis partition the
chain of matrices (i,)) at some k, (i<k<)):
A A A AY)

— The optimal parenthesization of matrices

(1,)) has optimal parenthesizations on either
side of k: for matrices (i,k) and (k+1,))

6/22/2010 CSE 3101 28

Multiplying Matrices (4)

 We try out all possible k. Recurrence:
M(,1)=0

M @i, j)=min,_; {M(i,k)+M (k+1, j)+d_d,d,}

o A direct recursive implementation Is

exponential — there is a lot of duplicated work
(Why?)

 But there are only (ngrn:@(nz)
different subproblems (i,j), where 1< 1<) <n

6/22/2010 CSE 3101 29

Multiplying Matrices (5)

Thus, it requires only ®(n?) space to store the
optimal cost M(i,}) for each of the subproblems:
half of a 2-d array M[1..n,1..n].

Matrix-Chain-Order(d,..d,)
1 for 1<1 to n do

2 ME1,1] <0

3 fTor 1«2 to n do

4 for 1<~1 to n-1+1 do

) J «1+l-1

6 MEE,j] <

7 for k1 to j-1 do

8 q <—M[i,k]+M[k+1,j]+di_1dkdj
9 iIT g < M[i,jJ] then

10 MLi.J] <qg

11 s[i,j] <Kk

12 return M, s

6/22/2010 CSE 3101 30

Multiplying Matrices

o After execution: M[1,n] contains the value of the
optimal solution and c contains optimal

subdivisions (choices of k) of any subproblem into
two subsubproblems.

e A simple recursive algorithm Print-Optimal-
Parents(c, I,) can be used to reconstruct an
optimal parenthesization.

o Exercise: Hand run the algorithm on
d =[10, 20, 3, 5, 30]

6/22/2010 CSE 3101 31

Multiplying Matrices

 Running time
— we are filling up a table with n? entries;
each take Q(n) work.
— S0, the running time is Q(n?3).
 From exponential time to polynomial.

6/22/2010 CSE 3101

32

Memoization

 |f we still like recursion very much, we can
structure our algorithm as a recursive algorithm:

— Initialize all M[i,j] to oo and call Lookup-Chain(d, i, |)

Lookup-Chain(d,1,})
iT M[i,J] < « then
return m[i1,j]
iIf 1=] then
miy,3] <0
else for k «1 to jJ-1 do
q <« Lookup-Chain(d,1,k)
+ Lookup-Chain(d,k+1,j)+d;_,d,d;
iIT g < M[1,]J] then
MLT,3] «q
return M[1,j]

©CoOoO NN WNPE

6/22/2010 CSE 3101 33

Applicability

Can we always apply dynamic programming?

No, certain conditions must hold.

6/22/2010 CSE 3101

34

Dynamic Programming

To apply dynamic programming, we have to:

1. Show optimal substructure — an optimal solution to
the problem contains within it optimal solutions to
sub-problems

« Solution to a problem:

— Making a choice out of a number of possibilities
(look what possible choices there can be)

— Solving one or more sub-problems that are the
result of a choice (characterize the space of sub-
problems)

e Show that solutions to sub-problems must
themselves be optimal for the whole solution to be
optimal (use “cut-and-paste” argument)

6/22/2010 CSE 3101 35

Dynamic Programming (2)

2. Write a recurrence for the value of an optimal
solution

° I\/Iopt = minover all choices k {(Sum of I\/Iopt of all
sub-problems, resulting from choice k) + (the
cost associated with making the choice k)}

 Show that the number of different instances
of sub-problems is bounded by a polynomial

6/22/2010 CSE 3101 36

Dynamic Programming (3)

3. Compute the value of an optimal solution in a
bottom-up fashion, so that you always have the
necessary sub-results pre-computed (or use
memoization)

— See If It Is possible to reduce the space requirements,
by “forgetting” solutions to sub-problems that will not be
used any more

4. Construct an optimal solution from computed
iInformation (which records a sequence of
choices made that lead to an optimal solution).

6/22/2010 CSE 3101 37

Longest Common Subsequence

e Two text strings are given: X and Y

 There Is a need to quantify how similar
they are:

— Comparing DNA sequences In studies of
evolution of different species

— Spell checkers

* One of the measures of similarity Is the
length of a Longest Common
Subsequence (LCS)

6/22/2010 CSE 3101

38

LCS: Definition

e Z IS a subsequence of X, If it Is possible to

generate Z by skipping some (possibly none)
characters from X

 For example: X =*ACGGTTA”, Y="CGTAT",
LCS(X,Y) = “CGTA” or “CGTT”

 To solve LCS problem we have to find “skips”
that generate LCS(X,Y) from X, and “skips”
that generate LCS(X,Y) from Y

6/22/2010 CSE 3101 39

LCS: Optimal substructure

 \We make Z to be empty and proceed from
the ends of X ="x; X, ...x,” and

Yn:Hyl y2 - .yn”
— If Xx,=Y,,, append this symbol to the beginning of
Z, and find optimally LCS(X,,.;, Y,,.1)
— If XY,
o Skip either a letter from X
e Or a letter from Y

» Decide which decision to do by comparing
LCS(X,,, Y,.1) and LCS(X, 1, Y,)

— “Cut-and-paste” argument

6/22/2010 CSE 3101 40

LCS: Recurrence

* The algorithm could be easily extended by
allowing more “editing” operations in addition to
copying and skipping (e.g., changing a letter)

* Letc[l,]] = LCS(X; Y))

-

0 f1=00r]=0
cll, j]]=4c[1-1 j-1]+1 If1,J>0andx =y,
‘max{cli, j-1],c[i-1, j]} if i, j>0and x; =y,

* Observe: conditions In the problem restrict sub-

problems (What is the total number of sub-
problems?)

6/22/2010 CSE 3101 41

LCS: Compute the optimum

LCS-Length(X, Y, m, n)

1 for 1<1 to m do

2 c[1,0] <0

3 for J«<0 to n do

4 c[O0,j] <O

5 for 1«1 to m do

6 for j«1 to n do

7 1T X; = y; then

8 cf[i,jJ] «<c[1-1,j-1]+1
9 b[1,]J] <« “copy”

10 else 1T c[i1-1,3] > c[1,]j-1] then
11 cli.j] «<cli-1,j]
12 b[i,j] < 7skip x”
13 else

14 clr.j] «<cli,j-1]
15 b[1,]J] <« 7skip y”
16 return c, b

6/22/2010 CSE 3101 42

LCS: Example

+ Lets run: X =“ACGGTTA", Y=“CGTAT’

 How much can we reduce our space
requirements, if we do not need to
reconstruct LCS?

6/22/2010 CSE 3101

43

0/1 Knapsack: the greedy algorithm fails

2 ss0
s 5 30§ $120
= 0
item 2 - A $120
1 200 $100 $100
item | 30 ar

item 20l $100 + +
§ei 10y $60 10} S60 m $60
$60 $100 $120 knapsack =$220 = 5160 = $180 = $240

(a) (b) (<)

Figure 16.2 The greedy strategy docs not work for the 0-1 knapsack problem. (a) The thief must
select a subset of the three items shown whose weight must not exceed 50 pounds. (b) The optimal
subset includes items 2 and 3. Any solution with item 1 is suboptimal, even though item [has
the greatest value per pound. (¢) For the fractional knapsack problem, taking the items in order of
greatest value per pound yields an optimal solution.

6/22/2010 CSE 3101 44

0/1 Knapsack

Optimal substructure:

Recurrence

cliw]=0

6/22/2010

If =0 or w=0
cli-1,w] If w, >w

max{v.+c[i-1,w-w],c[I-1,w]} if I > 0, w > w,

CSE 3101

45

0/1 Knapsack — Dynamic Programming solution

DP-0/1-Knapsack(v,w,n,W)
forw=0to W {c[O,w] =0}
fori=1ton{
c[i,0]=0
for w=1to W {
If(w; < w) {
If(v;+c[i-1,w-w;]>c[i-1,w])
cli,w] = v, + c[i-1,w-w}]
else c[i,w] = c[i-1,w]
Hiend if
else c[i,w] = c[i-1,w]
} /llend for w } //lend for |

6/22/2010 CSE 3101 46

