
6/22/2010 CSE 3101 16/22/2010 CSE 3101 Lecture 1 1

Instructor: Suprakash Datta (datta[at]cse.yorku.ca) ext 77875

Lectures: Tues, BC 215, 7–10 PM

Office hours: Wed 4-6 pm (CSEB 3043), or by
appointment.

Textbook: Cormen, Leiserson, Rivest, Stein.
Introduction to Algorithms (3nd Edition)

CSE 3101: Introduction to the Design and
Analysis of Algorithms

6/22/2010 CSE 3101 2

So far....

Finished looking at lower bounds and linear sorts.

Next: Memoization
-- Optimization problems - Dynamic programming
– A scheduling problem
– Matrix multiplication optimization
– Longest Common Subsequence
– Principles of dynamic programming

6/22/2010 CSE 3101 3

Divide and Conquer

• Divide and conquer method:
– Divide: If the input size is too large to deal with in a

straightforward manner, divide the problem into
two or more disjoint subproblems

– Conquer: Use divide and conquer recursively to
solve the subproblems

– Combine: Take the solutions to the subproblems
and “merge” these solutions into a solution for the
original problem

6/22/2010 CSE 3101 4

Divide and Conquer(2)

• E.g., MergeSort

• The subproblems
are independent.

Merge-Sort(A, p, r)
if p < r then

q(p+r)/2
Merge-Sort(A, p, q)
Merge-Sort(A, q+1, r)
Merge(A, p, q, r)

Merge-Sort(A, p, r)
if p < r then

q(p+r)/2
Merge-Sort(A, p, q)
Merge-Sort(A, q+1, r)
Merge(A, p, q, r)

6/22/2010 CSE 3101 5

Fibonacci Numbers

• Fn= Fn-1+ Fn-2

• F0 =0, F1 =1
– 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 …

• Straightforward recursive procedure is slow!
• Why? How slow?
• Let’s draw the recursion tree

6/22/2010 CSE 3101 6

Fibonacci Numbers (2)

• We keep calculating the same value over and over!

F(6) = 8

F(5)

F(4)

F(3)

F(1)

F(2)

F(0)

F(1) F(1)

F(2)

F(0)

F(3)

F(1)

F(2)

F(0)

F(1)

F(4)

F(3)

F(1)

F(2)

F(0)

F(1) F(1)

F(2)

F(0)

6/22/2010 CSE 3101 7

Fibonacci Numbers (3)

• How many summations are there?
• Golden ratio
• Thus Fn»1.6n

• Our recursion tree has only 0s and 1s as leaves, thus
we have »1.6n summations

• Running time is exponential!

1 1 5 1.61803...
2

n

n

F
F

 
  

6/22/2010 CSE 3101 8

Fibonacci Numbers (4)

• We can calculate Fn in linear time by remembering
solutions to the solved subproblems – memoization

• Compute solution in a bottom-up fashion
• Trade space for time!

– In this case, only two values need to be remembered at
any time (less than the depth of recursion stack!)

Fibonacci(n)
F00
F11
for i  1 to n do

Fi  Fi-1 + Fi-2

Fibonacci(n)
F00
F11
for i  1 to n do

Fi  Fi-1 + Fi-2

6/22/2010 CSE 3101 9

Lessons

We were able to reduce redundant computation
by evaluating the recurrence in a certain order,
and remembering previous values.

This is called memoization (no typo). This is
used very often in dynamic programming.

6/22/2010 CSE 3101 10

Test your understanding

The following encoding is used to encode text:

a:1, b:2, …, y:25, z:26.

Unfortunately this is not a prefix code!

So parsing is ambiguous:

Given 1125: possible decodings are

aabe, aay, ale, kbe, ky

Problem: Given a string of digits, find the number of
valid decodings.

6/22/2010 CSE 3101 11

Optimization Problems

• We have to choose one solution out of many
– a one with the optimal (minimum or
maximum) value.

• A solution exhibits a structure
– It consists of a string of choices that were made –

what choices have to be made to arrive at an
optimal solution?

• The algorithms computes the optimal value
plus, if needed, the optimal solution

6/22/2010 CSE 3101 12

A simple problem: optimizing an itinerary

We want to go from city 0 to city n using buses.
The road goes through cities 1,2,…, n-1.
The cost of going from city i to city j is cij.
Assume monotonic paths only (all edges go forward).
What is the minimum cost of going from 0 to n?

Exponential number of paths possible

(2 choices at each station – may or may not change
buses there, n stations)

Important property: The optimal cost of going from (say)
2 to 9 has no relation with the same from 11 to 16.

6/22/2010 CSE 3101 13

Optimization Problems

• We have to choose one solution out of many
– a one with the optimal (minimum or
maximum) value.

• A solution exhibits a structure
– It consists of a string of choices that were made –

what choices have to be made to arrive at an
optimal solution?

• The algorithms computes the optimal value
plus, if needed, the optimal solution

6/22/2010 CSE 3101 14

A simple problem: optimizing an itinerary

We want to go from city 0 to city n using buses.
The road goes through cities 1,2,…, n-1.
The cost of going from city i to city j is cij.
Assume monotonic paths only (all edges go forward).
What is the minimum cost of going from 0 to n?

Exponential number of paths possible

(2 choices at each station – may or may not change
buses there, n stations)

Important property: The optimal cost of going from (say)
2 to 9 has no relation with the same from 11 to 16.

6/22/2010 CSE 3101 15

Optimizing an itinerary

We want to make local choices and remember them
systematically. Let T(j) be the minimum cost of going
from city 0 to city j. So T(n) is the answer.
What can we say about T(j)?

Suppose someone tells you the best last choice (go
from i to n). Does it help?

Suppose you also know the best way to go from 0 to i.

Then we can glue the solutions together and get the

optimal solution!

Maybe we should not expect so much 

6/22/2010 CSE 3101 16

Optimizing an itinerary

Note that T(i) is a smaller subproblem than T(n).

Perhaps we can solve T(i) recursively?
Then we know T(n) = cin +T(i)

When did T(i) go from a

cost to a subproblem?

Paraphrased dialogue from Die Hard III:

(Samuel Jackson): And who will help you?

(SJ’s kids, in chorus): no one!

Great life lesson?

How can you prevent assuming that you know the best
last choice?:

Take the minimum over all last choice possibilities!

6/22/2010 CSE 3101 17

Optimizing an itinerary: putting it all together

T(j) = min k [ckj +T(k)], k<j.

Why does this help at all?

Can systematically compute T(j);

Hopefully results in a polynomial-time algorithm

Q: What’s the right way to compute T(j)?

A: What’s easy? Well T(1), since it equals c01

Start from T(1). Then do T(2). Keep going until you reach
T(n). Each entry uses the recursion above.

6/22/2010 CSE 3101 18

Optimizing an itinerary: getting solutions

T(n) = minimum cost of going from 0 to n.
What is the sequence of steps?

Need to remember more information;
Specifically the sequence of choices made.

T(j) = min k [ckj +T(k)], k<j.
C(j) = arg min k

What’s the last choice? C(n).

What’s the next one? C(C(n)) !

The next one is C(C(C(n))). The next one is
C(C(C(C(n)))). Keep going until you hit 0.

6/22/2010 CSE 3101 19

Optimizing an itinerary: running time

T(n) = minimum cost of going from 0 to n.
What is the time required to compute T(n), assuming
T(1) through T(n-1) are known?

Computing T(j) takes (j) time.
Computing C(j) takes O(1) time.
So the algorithm takes (n2) time.

6/22/2010 CSE 3101 20

Next: an activity selection problem

• Two assembly lines, Ai, Bi, each with n stations.
• Each job must complete go through Ai or Bi for each i.
• Different costs for going from Ai to Bi+1, Ai to Ai+1, Bi to Bi+1 ,

Bi to Ai+1, start to A1, start to B1, An to exit, Bn to exit.

Exponential number of paths possible (2 choices, n stations)

Again, suppose you know the first choice. Does that help?

6/22/2010 CSE 3101 21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6/22/2010 CSE 3101 22

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6/22/2010 CSE 3101 23

Again think recursively

Define f1[j] to be the cost of going to the jth station
on assembly line 1 from the start. Define f2[j]
similarly for assembly line 2. Then

f1[j] = e1 + a1,1 if j = 1
= min {f1[j-1]+a1,j, f2[j-1]+t2,j-1+a1,j} if j > 1

Similarly, for f2[j].
Finally
f* = min {f1[n]+x1, f2[n]+x2}

Express the cost of the remainder recursively.

Now assume you do not know the first choice!

6/22/2010 CSE 3101 24

Constructing the solution

As before, we need some extra storage and record
keeping to remember the choices made.

6/22/2010 CSE 3101 25

Running time

f1[j] = e1 + a1,1 if j = 1
= min {f1[j-1]+a1,j, f2[j-1]+t2,j-1+a1,j} if j > 1

Similarly, for f2[j]. Finally
f* = min {f1[n]+x1, f2[n]+x2}

How much time does it take to compute f*?

Constant amount of work to compute f1[j] , f2[j],
for each j, and for f*.

Total running time (n).

6/22/2010 CSE 3101 26

• Two matrices, A – n x m matrix and B – m x k
matrix, can be multiplied to get C with dimensions
n x k, using nmk scalar multiplications

• Problem: Compute a product of many matrices
efficiently

• Matrix multiplication is associative:
(AB)C = A(BC)

Multiplying Matrices

, , ,
1

m

i j i l l j
l

c a b


 
11 12

1311 12
21 22 22

2321 22
31 32

...

... ...

...

a a
bb b

a a c
bb b

a a

   
            

   

6/22/2010 CSE 3101 27

Multiplying Matrices (2)

• The parenthesization matters
• Consider A B  C  D, where

– A is 30  1, B is 1  40, C is 40  10, D is 10  25
• Costs:

– (AB)C)D = 1200 + 12000 + 7500 = 20700
– (AB)(CD) = 1200 + 10000 + 30000 = 41200
– A((BC)D) = 400 + 250 + 750 = 1400

• We need to optimally parenthesize

1 2 1, where is a matrixn i i iA A A A d d   

6/22/2010 CSE 3101 28

Multiplying Matrices (3)

• Let M(i,j) be the minimum number of
multiplications necessary to compute

• Key observations
– The outermost parenthesis partition the

chain of matrices (i,j) at some k, (ik<j):
(Ai… Ak)(Ak+1… Aj)

– The optimal parenthesization of matrices
(i,j) has optimal parenthesizations on either
side of k: for matrices (i,k) and (k+1,j)

j

k
k i

A



6/22/2010 CSE 3101 29

Multiplying Matrices (4)

• We try out all possible k. Recurrence:

• A direct recursive implementation is
exponential – there is a lot of duplicated work
(why?)

• But there are only
different subproblems (i,j), where 1i j n

 1

(,) 0

(,) min (,) (1,)i k j i k j

M i i

M i j M i k M k j d d d  



   

2()
2
n

n n
 

   
 

6/22/2010 CSE 3101 30

Multiplying Matrices (5)

Thus, it requires only (n2) space to store the
optimal cost M(i,j) for each of the subproblems:
half of a 2-d array M[1..n,1..n].

Matrix-Chain-Order(d0…dn)
1 for i1 to n do
2 M[i,i] 
3 for l2 to n do
4 for i1 to n-l+1 do
5 j i+l-1
6 M[i,j] 
 for ki to j-l do
8 q M[i,k]+M[k+1,j]+di-1dkdj
9 if q < M[i,j] then
10 M[i,j] q
11 s[i,j] k
12 return M, s

Matrix-Chain-Order(d0…dn)
1 for i1 to n do
2 M[i,i] 
3 for l2 to n do
4 for i1 to n-l+1 do
5 j i+l-1
6 M[i,j] 
 for ki to j-l do
8 q M[i,k]+M[k+1,j]+di-1dkdj
9 if q < M[i,j] then
10 M[i,j] q
11 s[i,j] k
12 return M, s

6/22/2010 CSE 3101 31

Multiplying Matrices

• After execution: M[1,n] contains the value of the
optimal solution and c contains optimal
subdivisions (choices of k) of any subproblem into
two subsubproblems.

• A simple recursive algorithm Print-Optimal-
Parents(c, i, j) can be used to reconstruct an
optimal parenthesization.

• Exercise: Hand run the algorithm on
d = [10, 20, 3, 5, 30]

6/22/2010 CSE 3101 32

Multiplying Matrices

• Running time
– we are filling up a table with n2 entries;

each take (n) work.
– So, the running time is (n3).

• From exponential time to polynomial.

6/22/2010 CSE 3101 33

Memoization

• If we still like recursion very much, we can
structure our algorithm as a recursive algorithm:
– Initialize all M[i,j] to and call Lookup-Chain(d, i, j)

Lookup-Chain(d,i,j)
1 if M[i,j] < then
2 return m[i,j]
3 if i=j then
4 m[i,j] 0
5 else for k i to j-1 do
6 q Lookup-Chain(d,i,k)
7 + Lookup-Chain(d,k+1,j)+di-1dkdj
7 if q < M[i,j] then
8 M[i,j] q
9 return M[i,j]

Lookup-Chain(d,i,j)
1 if M[i,j] < then
2 return m[i,j]
3 if i=j then
4 m[i,j] 0
5 else for k i to j-1 do
6 q Lookup-Chain(d,i,k)
7 + Lookup-Chain(d,k+1,j)+di-1dkdj
7 if q < M[i,j] then
8 M[i,j] q
9 return M[i,j]

6/22/2010 CSE 3101 34

Applicability

Can we always apply dynamic programming?

No, certain conditions must hold.

6/22/2010 CSE 3101 35

Dynamic Programming

To apply dynamic programming, we have to:
1. Show optimal substructure – an optimal solution to

the problem contains within it optimal solutions to
sub-problems

• Solution to a problem:
– Making a choice out of a number of possibilities

(look what possible choices there can be)
– Solving one or more sub-problems that are the

result of a choice (characterize the space of sub-
problems)

• Show that solutions to sub-problems must
themselves be optimal for the whole solution to be
optimal (use “cut-and-paste” argument)

6/22/2010 CSE 3101 36

Dynamic Programming (2)

2. Write a recurrence for the value of an optimal
solution
• Mopt = minover all choices k {(Sum of Mopt of all

sub-problems, resulting from choice k) + (the
cost associated with making the choice k)}

• Show that the number of different instances
of sub-problems is bounded by a polynomial

6/22/2010 CSE 3101 37

Dynamic Programming (3)

3. Compute the value of an optimal solution in a
bottom-up fashion, so that you always have the
necessary sub-results pre-computed (or use
memoization)

– See if it is possible to reduce the space requirements,
by “forgetting” solutions to sub-problems that will not be
used any more

4. Construct an optimal solution from computed
information (which records a sequence of
choices made that lead to an optimal solution).

6/22/2010 CSE 3101 38

Longest Common Subsequence

• Two text strings are given: X and Y
• There is a need to quantify how similar

they are:
– Comparing DNA sequences in studies of

evolution of different species
– Spell checkers

• One of the measures of similarity is the
length of a Longest Common
Subsequence (LCS)

6/22/2010 CSE 3101 39

LCS: Definition

• Z is a subsequence of X, if it is possible to
generate Z by skipping some (possibly none)
characters from X

• For example: X =“ACGGTTA”, Y=“CGTAT”,
LCS(X,Y) = “CGTA” or “CGTT”

• To solve LCS problem we have to find “skips”
that generate LCS(X,Y) from X, and “skips”
that generate LCS(X,Y) from Y

6/22/2010 CSE 3101 40

LCS: Optimal substructure

• We make Z to be empty and proceed from
the ends of Xm=“x1 x2 …xm” and
Yn=“y1 y2 …yn”
– If xm=yn, append this symbol to the beginning of

Z, and find optimally LCS(Xm-1, Yn-1)
– If xmyn,

• Skip either a letter from X
• or a letter from Y
• Decide which decision to do by comparing

LCS(Xm, Yn-1) and LCS(Xm-1, Yn)
– “Cut-and-paste” argument

6/22/2010 CSE 3101 41

LCS: Recurrence

• The algorithm could be easily extended by
allowing more “editing” operations in addition to
copying and skipping (e.g., changing a letter)

• Let c[i,j] = LCS(Xi, Yj)

• Observe: conditions in the problem restrict sub-
problems (What is the total number of sub-
problems?)

0 if 0 or 0
[,] [1, 1] 1 if , 0 and

max{ [, 1], [1,]} if , 0 and
i j

i j

i j
c i j c i j i j x y

c i j c i j i j x y

  
     
    

6/22/2010 CSE 3101 42

LCS: Compute the optimum

LCS-Length(X, Y, m, n)
1 for i1 to m do
2 c[i,0] 
3 for j0 to n do
4 c[0,j] 
5 for i1 to m do
6 for j1 to n do
7 if xi = yj then
8 c[i,j] c[i-1,j-1]+1
9 b[i,j] ”copy”
10 else if c[i-1,j]  c[i,j-1] then
11 c[i,j] c[i-1,j]
12 b[i,j] ”skip x”
13 else
14 c[i,j] c[i,j-1]
15 b[i,j] ”skip y”
16 return c, b

LCS-Length(X, Y, m, n)
1 for i1 to m do
2 c[i,0] 
3 for j0 to n do
4 c[0,j] 
5 for i1 to m do
6 for j1 to n do
7 if xi = yj then
8 c[i,j] c[i-1,j-1]+1
9 b[i,j] ”copy”
10 else if c[i-1,j]  c[i,j-1] then
11 c[i,j] c[i-1,j]
12 b[i,j] ”skip x”
13 else
14 c[i,j] c[i,j-1]
15 b[i,j] ”skip y”
16 return c, b

6/22/2010 CSE 3101 43

LCS: Example

• Lets run: X =“ACGGTTA”, Y=“CGTAT”
• How much can we reduce our space

requirements, if we do not need to
reconstruct LCS?

6/22/2010 CSE 3101 44

0/1 Knapsack: the greedy algorithm fails

6/22/2010 CSE 3101 45

0/1 Knapsack

Recurrence
c[i,w] = 0 if i=0 or w=0

= c[i-1,w] if wi >w
= max{vi+c[i-1,w-wi],c[i-1,w]} if i > 0, w  wi

Optimal substructure:

6/22/2010 CSE 3101 46

0/1 Knapsack – Dynamic Programming solution

DP-0/1-Knapsack(v,w,n,W)
for w =0 to W { c[0,w] = 0 }
for i=1 to n {

c[i,0]=0
for w=1 to W {

if(wi  w) {
if(vi+c[i-1,w-wi]>c[i-1,w])

c[i,w] = vi + c[i-1,w-wi]
else c[i,w] = c[i-1,w]

}//end if
else c[i,w] = c[i-1,w]

} //end for w } //end for i

