OUTPUT: an element m of A 1 < i < length(A)	such that m ≤ A[j],
Find-max (A)	Prove that for any valid
1. max ← A[1]	Input the output of
2. for $j \leftarrow 2$ to length(A)	Find-max satisfies the
3. do if (max < A[j])	autrust condition
4. max ← AUJ 5. return max	output condition.
Proof 2 [use loop invariant	ts]:
identity invariant) At the beginr	hing of iteration j of for loop, max contains
maximum of A[1j-1].	
maximum of A[1j-1]. Proof) Clearly true for j=2. For	j = 3,4,, assume that invariant holds for

Analysis of Algorithms • Measures of efficiency:	la?	 Factors affecting algorithm performation Importance of platform Hardware matters (memory hierarchy, process speed and architecture, network bandwidth, d speed,) Assembly language matters OS matters Programming language matters Importance of input instance 	sor lisk
Model: What machine do we assume? Intel? Motoro P4? Atom? GPU?	la?	Some instances are easier (algorithm dependen	it!)
1/2010 CSE 3101 Lecture 1	28	5/11/2010 CSE 3101 Lecture 1	

What is a machine-independent model? • Need a generic model that models (approximately) all machines · Modern computers are incredibly complex. Modeling the memory hierarchy and network connectivity generically is very difficult · All modern computers are "similar" in that they provide the same basic operations. · Virtually all computers today have at most eight processors. The vast majority have one.

CSE 3101 Lecture 1

	THE KAPI MODEL	
Generic abst	raction of sequential computers	
RAM assumption	otions:	
 Instruction choose or operation 	is (each taking constant time), we le type of instruction as a charac t that is counted:	e usually teristic
 Arithme 	etic (add, subtract, multiply, etc.)	
 Data m 	ovement (assign)	
 Control 	(branch, subroutine call, return)	
 Compa 	rison	
 Data types 	s – integers, characters, and float	s
 Ignores m 	emory hierarchy, network!	
6/11/2010	CEE 2101 Lesters 1	

29

5/11/2010

5/11/2010

30

Importance of input representation

Consider the problem of factoring an integer n Note: Public key cryptosystems depend critically on hardness of factoring – if you have a fast algorithm to factor integers, most e-commerce sites will become insecure!!

Trivial algorithm: Divide by 1,2,..., n/2 (n/2 divisions) aside: think of an improved algorithm

Representation affects efficiency expression: Let input size = S.

Unary: 1111.....1 (n times) -- S/2 multiplications (linear) Binary: $\log_2 n$ bits -- 2^{S-1} multiplications (exponential) Decimal: $\log_{10} n$ digits -- 10^{S-1}/2 multiplications (exponential) S(11/2010 CSE 3101 Lecture 1 34

When you see a new problem, ask... 1. Is it similar/identical/equivalent to an existing problem? 2. Has the problem been solved? 3. If a solution exists, is the solution the best possible? May be a hard question : Can answer NO by presenting a better algorithm. To answer YES need to prove that NO algorithm can do better! How do you reason about all possible algorithms? (there is an infinite set of correct algorithms) 4. If no solution exists, and it seems hard to design an efficient algorithm, is it intractable? 5/11/2010 CSE 3101 Lecture 1 46

A good wa – Stor som – In th	Loop invariants by to structure many programs: re the key information you currently the data structure. the main loop, take a step forward towards destinant by making a simple change to this	y know in ation data.	"We mainta The remain Initially, thir sorted list of the elemen the sorted I that is one last elemen sorted." English descrip - Easy, intuitive - Often impreci	Insertion sort ain a subset of elements sort ing elements are off to the s hk of the first element in the a of length one. One at a time, ts that is off to the side and v ist where it belongs. This giv element longer than it was b thas been inserted, the array ptions: e. ise, may leave out critical de	ed within a list. ide somewhere. array as a we take one of we insert it into res a sorted list efore. When the ay is completely wis completely tails.
5/11/2010	CSE 3101 Lecture 1	48	5/11/2010	CSE 3101 Lecture 1	49

Assertions - contd.

Example of Assertions

- Preconditions: Any assumptions that must be true about the input instance.
- Postconditions: The statement of what must be true when the algorithm/program returns.

Correctness:

5/11/2010

<PreCond> & <code $> \Rightarrow <$ PostCond>

If the input meets the preconditions, then the output must meet the postconditions.

If the input does not meet the preconditions, then nothing is required.

CSE 3101 Lecture 1

Partial correctness We must show three things about loop invariants:

- Initialization it is true prior to the first iteration
- Maintenance if it is true before an iteration, it remains true before the next iteration
- Termination when loop terminates the invariant gives a useful property to show the correctness of the algorithm

CSE 3101 Lecture 1

Proves that IF the program terminates then it works

Partial Correctness & Termination

5/11/2010

54

52

5/11/2010

Correctness of Insertion sort - contd.

for j=2 to length(A) do key=A[j] i=j-1 while i>0 and A[i]>key do A[i+1]=A[i] i---A[i+1]:=key

Invariant: at the start of each for loop, A[1...j-1] consists of elements originally in A[1...j-1] but in sorted order

56

Maintenance: the inner while loop moves elements A[j-1], A[j-2], ..., A[k] one position right without changing their order. Then the former A[/] element is inserted into kth position so that $A[k-1] \le A[k] \le A[k+1]$.

A[1...j-1] sorted + $A[j] \rightarrow A[1...j]$ sorted CSE 3101 Lecture 1 5/11/2010

Invariant: at the start of each for loop, A[1...j-1] consists of elements originally in A[1...j-1] but in

Then the invariant states: "A[1...n] consists of elements originally in A[1...n] but in sorted order" ©

5/11/2010

CSE 3101 Lecture 1

57

· Q2: How can we simplify the expression?

5/11/2010

CSE 3101 Lecture 1

59

CSE 3101 Lecture 1

64

5/11/2010

Asymptotic notation – contd. The "big-Theta" Θ–Notation - asymptoticly tight bound $-f(n) \in \Theta(g(n))$ if there exists constants c_1 , c_2 , and n_0 , s.t. c_1 $C_2 \cdot q(n)$ $g(n) \leq f(n) \leq c_2 g(n)$ for $n \geq n_0$ f(n)ime • $f(n) \in \Theta(g(n))$ if and only if f(n) $C_1 \cdot q(n)$ $\in O(g(n))$ and $f(n) \in \Omega(g(n))$ • O(f(n)) is often misused n Input Size instead of $\Theta(f(n))$ 5/11/2010 CSE 3101 Lecture 1 65

Comparison of Running Times				
Running	Maximum	problem size	e (n)	
Time	1 second	1 minute	1 hour	
400 <i>n</i>	2500	150000	9000000	
20 <i>n</i> log <i>n</i>	4096	166666	7826087	
$2n^2$	707	5477	42426	
n^4	31	88	244	
2^n	19	25	31	
5/11/2010	CSE 310)1 Lecture 1		

T (n)	10	100	1,000	10,000	
log n	3	6	9	13	
$n^{1/2}$	3	10	31	100	
n	10	100	1,000	10,000	
n log n	30	600	9,000	130,000	
n^2	100	10,000	106	108	
n^3	1,000	106	109	1012	
2 <i>n</i>	1,024	1030	10300	103000	

CSE 3101 Lecture 1

85

5/11/2010

Loop invariants				
 Recall that Loop invariants a iteration of the lo 2. The test condition 	allow you to re op. of the loop is	eason about a sing	lle variant.	
 Design the loop invariant so that when the termination condition is attained, and the invariant is true, then the goal is reached: invariant + termination => goal 				
4. Create invariants simple, and capture all the termination)	which are goals of the a	It takes practice		
It is best to use mathematical symbols for loop invariants; when this is too complicated, use clear prose and common sense.				
5/11/2010	CSE 3101 Lectu	re l	90	

Try the new idea				
Input: <a,b> = < Output: GCD(a,b)= 4</a,b>	54,44>			
GCD(a,b) = GCD(a-b	b)			
GCD(64,44) = GCD(20,4	(4) $GCD(12.4) = GCD(8.4)$			
GCD(20,44) = GCD(44,2	C(12, 1) = C(14, 4)			
GCD(44,20) = GCD(24,2	20)			
GCD(24,20) = GCD(4,20)) $GCD(4,4) = GCD(0,4)$			
GCD(4,20) = GCD(20,4)			
GCD(20,4) = GCD(16,4) What is the running time?			
GCD(16,4) = GCD(12,4	.)			
5/11/2010 CSE 3	101 Lecture 1 103			

	A design paradigm	
Divide and co	nquer	
5/11/2010	CSE 3101 Lecture 1	109

CSE 3101 Lecture 1

117

5/11/2010

```
Time complexity of MULT

    T(1) = 1 & T(n) = 4 T(n/2) + n

Technique 2: Expand recursion
T(n) = 4 T(n/2) + n
     = 4 (4T(n/4) + n/2) + n = 4^{2}T(n/4) + n + 2n
     = 4^{2}(4T(n/8) + n/4) + n + 2n
     = 4^{3}T(n/8) + n + 2n + 4n
     = .....
     = 4^{k}T(1) + n + 2n + 4n + ... + 2^{k-1}n where 2^{k} = n
       GUESS
     = n^2 + n (1 + 2 + 4 + ... + 2^{k-1})
     = n^2 + n (2^{k} - 1)
     = 2 n<sup>2</sup> - n [NOT FASTER THAN BEFORE]
                         CSE 3101 Lecture 1
5/11/2010
                                                            118
```


