
5/11/2010 CSE 3101 Lecture 1 26

INPUT: A[1..n] - an array of integers
OUTPUT: an element m of A such that m ≤ A[j],

1 ≤ j ≤ length(A)
Find-max (A)
1. max ← A[1]
2. for j ← 2 to length(A)
3. do if (max < A[j])
4. max ← A[j]
5. return max

Proof 2 [use loop invariants]:
(identify invariant) At the beginning of iteration j of for loop, max contains the

maximum of A[1..j-1].
(Proof) Clearly true for j=2. For j = 3,4,…, assume that invariant holds for j-1.

So at the beginning of iteration j-1 max contains the maximum of A[1..j-2].
Case (a) A[j-1] is the maximum of A[1..j-1]. In lines 3,4, max is set to A[j-1].
Case (b) A[j-1] is not the maximum of A[1..j-1], so the maximum of A[1..j-1] is

in A[1..j-2]. By our assumption max already has this value and by lines 3-4
max is unchanged in this iteration.

Prove that for any valid
Input, the output of
Find-max satisfies the
output condition.

Correctness Proof – 2 (typos fixed)

5/11/2010 CSE 3101 Lecture 1 27

INPUT: A[1..n] - an array of integers
OUTPUT: an element m of A such that m ≤ A[j],

1 ≤ j ≤ length(A)
Find-max (A)
1. max ← A[1]
2. for j ← 2 to length(A)
3. do if (max < A[j])
4. max ← A[j]
5. return max

Proof using loop invariants - continued:
We proved that the invariant holds at the beginning of iteration j
for each j used by Find-max.

Upon termination, j = length(A)+1. (WHY?)
The invariant holds, and so max contains the maximum of A[1..n]
-- STRUCTURED PROOF TECHNIQUE!
-- VERY SIMILAR TO INDUCTION!

We will see more non-trivial examples later.

Correctness Proof – continued

5/11/2010 CSE 3101 Lecture 1 28

• Measures of efficiency:
–Running time
–Space used
– others

• Efficiency as a function of input size (NOT value!)
–Number of data elements (numbers, points)
–Number of bits in an input number
e.g. Find the factors of a number n,

Determine if an integer n is prime

Model: What machine do we assume? Intel? Motorola?
P4? Atom? GPU?

Analysis of Algorithms

5/11/2010 CSE 3101 Lecture 1 29

Factors affecting algorithm performance

Importance of platform
• Hardware matters (memory hierarchy, processor

speed and architecture, network bandwidth, disk
speed,…..)

• Assembly language matters
• OS matters
• Programming language matters

Importance of input instance

Some instances are easier (algorithm dependent!)

5/11/2010 CSE 3101 Lecture 1 30

What is a machine-independent model?

• Need a generic model that models (approximately) all
machines

• Modern computers are incredibly complex.
• Modeling the memory hierarchy and network

connectivity generically is very difficult
• All modern computers are “similar” in that they

provide the same basic operations.
• Virtually all computers today have at most eight

processors. The vast majority have one.

5/11/2010 CSE 3101 Lecture 1 31

The RAM model

• Generic abstraction of sequential computers
• RAM assumptions:

– Instructions (each taking constant time), we usually
choose one type of instruction as a characteristic
operation that is counted:

• Arithmetic (add, subtract, multiply, etc.)
• Data movement (assign)
• Control (branch, subroutine call, return)
• Comparison

– Data types – integers, characters, and floats
– Ignores memory hierarchy, network!

5/11/2010 CSE 3101 Lecture 1 32

Can we compute the running time on a RAM?

• Do we know the speed of this generic machine?
• If we did, will that say anything about the running time

of the same program on a real machine?
• What simplifying assumptions can we make?

5/11/2010 CSE 3101 Lecture 1 33

Idea: efficiency as a function of input size

• Want to make statements like, “the running time of an
algorithm grows linearly with input size”.

• Captures the nature of growth of running times, NOT
actual values

• Very useful for studying the behavior of algorithms for
LARGE inputs

• Aptly named Asymptotic Analysis

5/11/2010 CSE 3101 Lecture 1 34

Consider the problem of factoring an integer n
Note: Public key cryptosystems depend critically on
hardness of factoring – if you have a fast algorithm to
factor integers, most e-commerce sites will become
insecure!!

Trivial algorithm: Divide by 1,2,…, n/2 (n/2 divisions)
aside: think of an improved algorithm

Importance of input representation

Representation affects efficiency expression:
Let input size = S.

Unary: 1111…..1 (n times) -- S/2 multiplications (linear)
Binary: log2 n bits -- 2S-1 multiplications (exponential)
Decimal: log10 n digits -- 10S-1/2 multiplications (exponential)

5/11/2010 CSE 3101 Lecture 1 35

Analysis of Find-max

Find-max (A)
1. max ← A[1]
2. for j ← 2 to length(A)
3. do if (max < A[j])
4. max ← A[j]
5. return max

cost
c1
c2
c3
c4
c5

times
1
n
n-1
0≤k≤n-1
1

COUNT the number of cycles (running time) as a
function of the input size

Running time (upper bound): c1 + c5 – c3 – c4 + (c2 + c3 + c4)n
Running time (lower bound): c1 + c5 – c3 – c4 + (c2 + c3)n
Q: What are the values of ci?

5/11/2010 CSE 3101 Lecture 1 36

Best/Worst/Average Case Analysis

• Best case: A[1] is the largest element.
• Worst case: elements are sorted in increasing order
• Average case: ? Depends on the input characteristics
Q: What do we use?
A: Worst case or Average-case is usually used:

– Worst-case is an upper-bound; in certain
application domains (e.g., air traffic control,
surgery) knowing the worst-case time complexity
is of crucial importance

– Finding the average case can be very difficult;
needs knowledge of input distribution.

– Best-case is not very useful.

5/11/2010 CSE 3101 Lecture 1 37

Best/Worst/Average Case (2)

– For a specific size of input n, investigate running
times for different input instances:

1n

2n

3n

4n

5n

6n

5/11/2010 CSE 3101 Lecture 1 38

Best/Worst/Average Case (3)

For inputs of all sizes:

1n

2n

3n

4n

5n

6n

Input instance size

R
un

ni
ng

 ti
m

e

1 2 3 4 5 6 7 8 9 10 11 12 …..

best-case

average-case

worst-case

5/11/2010 CSE 3101 Lecture 1 39

Asymptotic notation : Intuition

Running time bound: c1 + c5 – c3 – c4 + (c2 + c3 + c4)n
What are the values of ci? machine-dependent

A simpler expression: c5 + c6n [still complex].

Q: Can we throw away the lower order terms?
A: Yes, if we do not worry about constants, and there

exist constants c7, c8 such that c7n ≤ c5 + c6n ≤ c8n,
then we say that the running time is θ(n).

Need some mathematics to formalize this (LATER).

Q: Are we interested in small n or large?
A: Assume interested in large n – cleaner theory,

usually realistic. Remember the assumption when
interpreting results!

5/11/2010 CSE 3101 Lecture 1 40

What does asymptotic analysis not predict?

• Exact run times
• Comparison for small instances
• Small differences in performance

5/11/2010 CSE 3101 Lecture 1 41

1. Covered basics of algorithm correctness, analysis (Ch.
1 of the text).

2. Next: Another example of algorithm correctness and
analysis (Ch 2). More about asymptotic notation (Ch.
3).

Note: Some slides in this lecture are adopted from Jeff Edmonds’ slides.

So far…

5/11/2010 CSE 3101 Lecture 1 42

Asymptotic notation - continued

Will do the relevant math later. For now, the intuition is:
1. O() is used for upper bounds “grows slower than”
2. Ω() used for lower bounds “grows faster than”
3. Θ() used for denoting matching upper and lower

bounds. “grows as fast as”
These are bounds on running time, not for the problem

The thumbrules for getting the running time are
1. Throw away all terms other than the most significant

one -- Calculus may be needed
e.g.: which is greater: n log n or n1.001 ?

2. Throw away the constant factor.
3. The expression is Θ() of whatever’s left.

Asymptotic optimality – expression inside Θ() best possible.
5/11/2010 CSE 3101 Lecture 1 43

INPUT: A[1..n] - an array of integers, k, 1 ≤k ≤length(A)
OUTPUT: an element m of A such that m is the kth largest
element in A.

Brute Force: Find the maximum, remove it. Repeat k-1 times.
Find maximum.

Q: How good is this algorithm?
A: Depends on k! Can show that the running time is

Θ(nk). If k=1, asymptotically optimal.
Also true for any constant k.

If k = log n, running time is Θ(n log n). Is this good?
If k = n/2 (MEDIAN), running time is Θ(n2).

Definitely bad! Can sort in O(n log n)!

Q: Is there a better algorithm? YES!

A Harder Problem

Think for a minute

5/11/2010 CSE 3101 Lecture 1 44

INPUT: n distinct integers such that n = 2m-1, each integer k
satisfies 0 ≤k ≤ 2m-1.

OUTPUT: a number j, 0 ≤ j ≤ 2m-1, such that j is not contained
in the input.

Brute Force 1: Sort the numbers.
Analysis: Θ(n log n) time, Θ(n log n) space.

Brute Force 2: Use a table of size n, “tick off” each
number as it is read.
Analysis: θ (n) time, θ (n) space.

Q: Can the running time be improved? No (why?)
Q: Can the space complexity be improved? YES!

Space complexity

Think for a minute
5/11/2010 CSE 3101 Lecture 1 45

INPUT: n distinct integers such that n = 2m-1, each integer k
satisfies 0 ≤k ≤ 2m-1.

OUTPUT: a number j, 0 ≤ j ≤ 2m-1, such that j is not contained
in the input.

Observation:

000 Keep a running bitwise sum (XOR) of the
001 inputs. The final sum is the integer
010 missing.
011
100 Q: How do we prove this?
101
110

+ 111

000

Space complexity – contd.

5/11/2010 CSE 3101 Lecture 1 46

1. Is it similar/identical/equivalent to an existing problem?
2. Has the problem been solved?
3. If a solution exists, is the solution the best possible?

May be a hard question :
Can answer NO by presenting a better algorithm.
To answer YES need to prove that NO algorithm can
do better!
How do you reason about all possible algorithms?
(there is an infinite set of correct algorithms)

4. If no solution exists, and it seems hard to design an
efficient algorithm, is it intractable?

When you see a new problem, ask…

5/11/2010 CSE 3101 Lecture 1 47

More about correctness

• Don’t tack on a formal proof of correctness after coding
to make the professor happy.

• It need not be mathematical mumbo jumbo.
• Goal: To think about algorithms in such way that their

correctness is transparent.

1. Iterative Algorithms 2. Recursive Algorithms

“Take one step at a time
towards the final destination” LATER.

loop (until done)

take step

end loop

5/11/2010 CSE 3101 Lecture 1 48

A good way to structure many programs:
– Store the key information you currently know in

some data structure.
– In the main loop,

• take a step forward towards destination
by making a simple change to this data.

Loop invariants

5/11/2010 CSE 3101 Lecture 1 49

“We maintain a subset of elements sorted within a list.
The remaining elements are off to the side somewhere.
Initially, think of the first element in the array as a
sorted list of length one. One at a time, we take one of
the elements that is off to the side and we insert it into
the sorted list where it belongs. This gives a sorted list
that is one element longer than it was before. When the
last element has been inserted, the array is completely
sorted.”

English descriptions:

- Easy, intuitive.
- Often imprecise, may leave out critical details.

Insertion sort

5/11/2010 CSE 3101 Lecture 1 50

Insertion sort

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

Can you understand
The algorithm?
I would not know
this is insertion sort!

Moral: document code!

What is a good loop invariant?

It is easy to write a loop invariant if you understand what
the algorithm does.

Use assertions.
5/11/2010 CSE 3101 Lecture 1 51

An assertion is a statement about the current state of
the data structure that is either true or false.

Useful for
– thinking about algorithms
– developing
– describing
– proving correctness

An assertion is not a task for the algorithm to perform.
It is only a comment that is added for the benefit of the
reader.

Assertions

An assertion need not
consist of formal/math
mumbo jumbo

Use an informal description

5/11/2010 CSE 3101 Lecture 1 52

Example of Assertions
• Preconditions: Any assumptions that must be true

about the input instance.
• Postconditions: The statement of what must be true

when the algorithm/program returns.
Correctness:

<PreCond> & <code> ⇒ <PostCond>

If the input meets the preconditions,
then the output must meet the postconditions.

If the input does not meet the preconditions,
then nothing is required.

Assertions – contd.

5/11/2010 CSE 3101 Lecture 1 53

Example of Assertions
Assertions – contd.

<preCond>
codeA
loop

<loop-invariant>
exit when <exit Cond>
codeB

endloop
codeC
<postCond>

5/11/2010 CSE 3101 Lecture 1 54

We must show three things about loop invariants:
� Initialization – it is true prior to the first iteration
� Maintenance – if it is true before an iteration, it

remains true before the next iteration
� Termination – when loop terminates the invariant

gives a useful property to show the correctness of
the algorithm

Proves that IF the program terminates then it works

Partial Correctness &
Termination

Partial correctness

Correctness

5/11/2010 CSE 3101 Lecture 1 55

Correctness of Insertion sort

for j=2 to length(A)
do key=A[j]

//Insert A[j] into the sorted
//sequence A[1..j-1]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

//Insert A[j] into the sorted
//sequence A[1..j-1]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

Invariant: at the start of
each for loop, A[1…j-1]
consists of elements
originally in A[1…j-1] but in
sorted order

Initialization: j = 2, the invariant trivially holds because
A[1] is a sorted array ☺

5/11/2010 CSE 3101 Lecture 1 56

Correctness of Insertion sort – contd.

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

Invariant: at the start of
each for loop, A[1…j-1]
consists of elements
originally in A[1…j-1] but in
sorted order

Maintenance: the inner while loop moves elements A[j-1],
A[j-2], …, A[k] one position right without changing their
order. Then the former A[j] element is inserted into kth

position so that A[k-1] ≤ A[k] ≤ A[k+1].

A[1…j-1] sorted + A[j] → A[1…j] sorted
5/11/2010 CSE 3101 Lecture 1 57

Correctness of Insertion sort – contd.

for j=2 to length(A)
do key=A[j]

Insert A[j] into the sorted
sequence A[1..j-1]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

Insert A[j] into the sorted
sequence A[1..j-1]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

Invariant: at the start of
each for loop, A[1…j-1]
consists of elements
originally in A[1…j-1] but in
sorted order

Termination: the loop terminates, when j=n+1.
Then the invariant states: “A[1…n] consists of elements
originally in A[1…n] but in sorted order” ☺

5/11/2010 CSE 3101 Lecture 1 58

Analysis of Insertion Sort

for j←2 to n
do key←A[j]

Insert A[j] into the sorted
sequence A[1..j-1]

i←j-1
while i>0 and A[i]>key
do A[i+1]←A[i]

i ← i-1
A[i+1] ← key

cost
c1
c2
0

c3
c4
c5
c6
c7

times
n
n-1
n-1

n-1

n-1

2

n
jj

t
=∑

2
(1)n

jj
t

=
−∑

2
(1)n

jj
t

=
−∑

Let’s compute the running time as a function of the
input size

5/11/2010 CSE 3101 Lecture 1 59

Analysis of Insertion Sort – contd.

• Best case: elements already sorted → tj=1, running
time = Θ(n), i.e., linear time.

• Worst case: elements are sorted in inverse order
→ tj=j, running time = Θ(n2), i.e., quadratic time

• Average case: tj=j/2, running time = Θ(n2), i.e.,
quadratic time

• We analyzed insertion sort, and it has worst case
running time An2 + Bn + C, where A = (c5+c6+c7)/2
etc.

• Q1: How useful are the details in this result?
• Q2: How can we simplify the expression?

5/11/2010 CSE 3101 Lecture 1 60

Back to asymptotics……

We will now look more formally at the process
of simplifying running times and other
measures of complexity.

5/11/2010 CSE 3101 Lecture 1 61

Asymptotic analysis

• Goal: to simplify analysis of running time by getting
rid of ”details”, which may be affected by specific
implementation and hardware

– like “rounding”: 1,000,001 ≈ 1,000,000
– 3n2 ≈ n2

• Capturing the essence: how the running time of an
algorithm increases with the size of the input in the
limit.
– Asymptotically more efficient algorithms are best

for all but small inputs

5/11/2010 CSE 3101 Lecture 1 62

Asymptotic notation

• The “big-Oh” O-Notation
– asymptotic upper bound
– f(n) ∈ O(g(n)), if there exists

constants c and n0, s.t. f(n) ≤
c g(n) for n ≥ n0

– f(n) and g(n) are functions over
non-negative integers

• Used for worst-case analysis

)(nf
()c g n⋅

0n Input Size

R
un

ni
ng

 T
im

e

5/11/2010 CSE 3101 Lecture 1 63

• The “big-Omega” Ω−Notation
– asymptotic lower bound
– f(n) ∈ Ω(g(n)) if there exists

constants c and n0, s.t. c g(n) ≤
f(n) for n ≥ n0

• Used to describe best-case
running times or lower
bounds of algorithmic
problems
– E.g., lower-bound of searching

in an unsorted array is Ω(n).

Input Size

R
un

ni
ng

 T
im

e)(nf
()c g n⋅

0n

Asymptotic notation – contd.

5/11/2010 CSE 3101 Lecture 1 64

Asymptotic notation – contd.

• Simple Rule: Drop lower order terms and
constant factors.
– 50 n log n ∈ O(n log n)
– 7n - 3 ∈ O(n)
– 8n2 log n + 5n2 + n ∈ O(n2 log n)

• Note: Even though 50 n log n ∈ O(n5), we
usually try to express a O() expression using
as small an order as possible

5/11/2010 CSE 3101 Lecture 1 65

• The “big-Theta” Θ−Notation
– asymptoticly tight bound
– f(n) ∈ Θ(g(n)) if there exists

constants c1, c2, and n0, s.t. c1
g(n) ≤ f(n) ≤ c2 g(n) for n ≥ n0

• f(n) ∈ Θ(g(n)) if and only if f(n)
∈ Ο(g(n)) and f(n) ∈ Ω(g(n))

• O(f(n)) is often misused
instead of Θ(f(n))

Input Size

R
un

ni
ng

 T
im

e)(nf

0n

Asymptotic notation – contd.

)(ngc ⋅2

)(ngc ⋅1

5/11/2010 CSE 3101 Lecture 1 66

1. Started formal definitions of asymptotic notation – Ch. 3
of the text.

2. Next, we will continue with iterative algorithms
3. Then, we move to recursive algorithms.

Until now…

5/11/2010 CSE 3101 Lecture 1 67

Asymptotic notation – contd.

• Two more asymptotic notations
– "Little-Oh" notation f(n)=o(g(n))

non-tight analogue of Big-Oh
• For every c, there should exist n0 , s.t. f(n) ≤ c g(n)

for n ≥ n0

• Used for comparisons of running times.
If f(n) ∈ o(g(n)), it is said that g(n) dominates f(n).

• More useful defn:

– "Little-omega" notation f(n) ∈ ω(g(n))
non-tight analogue of Big-Omega

f(n)
lim ----- = 0
n→∞ g(n)

5/11/2010 CSE 3101 Lecture 1 68

Asymptotic notation – contd.

• (VERY CRUDE) Analogy with real numbers
– f(n) = O(g(n)) ≅ f ≤ g
– f(n) = Ω(g(n)) ≅ f ≥ g
– f(n) = Θ(g(n)) ≅ f = g
– f(n) = o(g(n)) ≅ f < g
– f(n) = ω(g(n)) ≅ f > g

• Abuse of notation: f(n) = O(g(n)) actually
means f(n) ∈ O(g(n)).

5/11/2010 CSE 3101 Lecture 1 69

Points to ponder and lessons

Common uses:
Θ(1) – constant.
nΘ(1) – polynomial
2Θ(n) – exponential

• When is asymptotic analysis useful?
• When is it NOT useful?

Many, many abuses of asymptotic notation in Computer
Science literature.

Lesson: Always remember the implicit assumptions…

Be careful!
nΘ(1) ≠ Θ(n1)

2Θ(n) ≠ Θ(2n)

5/11/2010 CSE 3101 Lecture 1 70

Comparison of Running Times

Running
Time

Maximum problem size (n)

1 second 1 minute 1 hour

400n 2500 150000 9000000

20n log n 4096 166666 7826087

2n2 707 5477 42426

n4 31 88 244

2n 19 25 31

5/11/2010 CSE 3101 Lecture 1 71

Classifying functions

T(n) 10 100 1,000 10,000

log n 3 6 9 13

n1/2 3 10 31 100

10 100 1,000 10,000

n log n 30 600 9,000 130,000

n2 100 10,000 106 108

n3 1,000 106 109 1012

2n 1,024 1030 10300 103000

n

5/11/2010 CSE 3101 Lecture 1 72

Hierarchy of functions

Functions

Poly Logarithm
ic

Polynom
ial

Exponential

Exp

D
ouble Exp

C
onstant

(log n)5 n5 25n5 2 n5 25n

2

O
thers

2n log(n)

5/11/2010 CSE 3101 Lecture 1 73

Classifying Polynomials

Polynomial

Linear

Q
uadratic

C
ubic

?

5n25n 5n3 5n4

O
thers

5n3 log7(n)

Dominant term is of the form nc

5/11/2010 CSE 3101 Lecture 1 74

Logarithmic functions

• log10n = # digits to write n
• log2n = # bits to write n

= 3.32 log10n
• log(n1000) = 1000 log(n)

Differ only by a
multiplicative
constant.

(log n)5 = log5 n

Poly Logarithmic (a.k.a. polylog)

5/11/2010 CSE 3101 Lecture 1 75

Crucial asymptotic facts

Logarithmic << Polynomial
log1000 n << n0.001 For sufficiently large n

Linear << Quadratic
10000 n << 0.0001 n2 For sufficiently large n

Polynomial << Exponential
n1000 << 20.001 n For sufficiently large n

5/11/2010 CSE 3101 Lecture 1 76

Are constant functions constant?

• 5
• 1,000,000,000,000
• 0.0000000000001
• -5
• 0
• 8 + sin(n)

Yes
Yes
Yes
No
No
Yes Lie in between

7
9

The running time of the algorithm is a “constant”
It does not depend significantly

on the size of the input.
Write θ(1).

5/11/2010 CSE 3101 Lecture 1 77

Polynomial Functions

Quadratic
• n2

• 0.001 n2

• 1000 n2

• 5n2 + 3000n + 2log n

Polynomial
•nc

• n0.0001

• n10000

• 5n2 + 8n + 2log n
• 5n2 log n
• 5n2.5

Lie in between

Lie in between

5/11/2010 CSE 3101 Lecture 1 78

Exponential functions

• 2n

• 20.0001 n

• 210000 n

• 8n

• 2n / n100

•2n · n100

= 23n

> 20.5n

< 22n

20.5n > n100

2n = 20.5n · 20.5n > n100 · 20.5n

2n / n100 > 20.5n

5/11/2010 CSE 3101 Lecture 1 79

Proving asymptotic expressions

Use definitions!
e.g. f(n) = 3n2 + 7n + 8 = θ(n2)
f(n) ∈ Θ(g(n)) if there exists constants c1, c2, and n0, s.t.
c1 g(n) ≤ f(n) ≤ c2 g(n) for n ≥ n0

Here g(n) = n2

One direction (f(n) = Ω(g(n)) is easy
c1 g(n) ≤ f(n) holds for c1 = 3 and n ≥ 0

The other direction (f(n) = Ο(g(n)) needs more care
f(n) ≤ c2 g(n) holds for c2 = 18 and n ≥ 1 (CHECK!)

So n0 = 1

5/11/2010 CSE 3101 Lecture 1 80

Proving asymptotic expressions – contd.

Caveats!
1. constants c1, c2 MUST BE POSITIVE .
2. Could have chosen c2 = 3 + ε for any ε>0. WHY?
-- because 7n + 8 ≤ εn2 for n ≥ n0 for some sufficiently
large n0. Usually, the smaller the ε you choose, the
harder it is to find n0. So choosing a large ε is easier.

3. Order of quantifiers
∃c1 c2 ∃n0 ∀ n ≥ n0, c1g(n) ≤ f(n) ≤ c2g(n)
vs
∃n0 ∀ n ≥ n0 ∃c1 c2, c1g(n) ≤ f(n) ≤ c2g(n)
-- allows a different c1 and c2 for each n. Can choose
c2 = 1/n!! So we can “prove” n3 = Θ (n2).

5/11/2010 CSE 3101 Lecture 1 81

Why polynomial vs exponential?

Philosophical/Mathematical reason – polynomials have
different properties, grow much slower; mathematically
natural distinction.

Practical reasons
1. almost every algorithm ever designed and every
algorithm considered practical are very low degree
polynomials with reasonable constants.
2. a large class of natural, practical problems seem to
allow only exponential time algorithms. Most experts
believe that there do not exist any polynomial time
algorithms for any of these; i.e. P ≠ NP.

5/11/2010 CSE 3101 Lecture 1 82

Next: Some mathematical tools

• Important to have the right tools
• Still, these are only tools; necessary but not

sufficient to solve problems.

• We will cover some essential tools in this
course for your repertoire.

5/11/2010 CSE 3101 Lecture 1 83

A Quick Math Review

• Geometric progression
– given an integer n0 and a real number 0< a ≠ 1

– geometric progressions exhibit exponential growth
• Arithmetic progression

1
2

0

11 ...
1

nn
i n

i

aa a a a
a

+

=

−
= + + + + =

−∑

2

0

1 2 3 ...
2

n

i

n ni n
=

+
= + + + + =∑

5/11/2010 CSE 3101 Lecture 1 84

Pictorial proofs of sums

5/11/2010 CSE 3101 Lecture 1 85

Review: Proof by Induction

• We want to show that property P is true for all
integers n ≥ n0

• Basis: prove that P is true for n0

• Inductive step: prove that if P is true for all k
such that n0 ≤ k ≤ n – 1 then P is also true for n

• Example

• Base case:
0

(1)() for 1
2

n

i

n nS n i n
=

+
= = ≥∑

1

0

1(1 1)(1)
2i

S i
=

+
= =∑

5/11/2010 CSE 3101 Lecture 1 86

Proof by Induction (2)

0

1

0 0

2

(1)() for 1 k 1
2

() (1)

(1 1) (2)(1)
2 2

(1)
2

k

i
n n

i i

k kS k i n

S n i i n S n n

n n n nn n

n n

=

−

= =

+
= = ≤ ≤ −

= = + = − + =

− + − +
= − + = =

+
=

∑

∑ ∑

• Inductive Step

5/11/2010 CSE 3101 Lecture 1 87

Important thumbrules for sums

”addition made easy” – Jeff Edmonds.

Geometric like: f(i) = 2Ω(i) ⇒ Σ f(i) = Θ(f(n))

Arithmetic like: i.f(i) = i Θ(1) ⇒ Σ f(i) = Θ(nf(n))

Harmonic: f(i) = 1/i ⇒ Σ f(i) = Θ(log n)

Bounded tail: i.f(i) = 1/iΘ(1) ⇒ Σ f(i) = Θ(1)
Use as thumbrules only

i=1

n

i=1

i=1

i=1

n

n

n

“Theta of last term”

no of terms x last term

“Theta of first term”

5/11/2010 CSE 3101 Lecture 1 88

Later: Some standard techniques

We will get into these techniques as and when we need
them. If you are interested, read Appendix A.

• Approximation with integrals :Derive, rather than
memorize the formula; e.g ∑1/k.

• Telescoping sum: ∑1/(k(k+1))
• Split a sum: ∑k/2k

• Approximate crudely from both sides: e.g. ∑2k

• Integrate and differentiate series: ∑kxk

5/11/2010 CSE 3101 Lecture 1 89

1. Spent some time formalizing asymptotic notation.
2. Have seen insertion-sort and loop invariants for it.

The invariant falls under the “more of the input” class in
Jeff Edmonds’ notation.

3. Next, selection sort; the invariant for this falls under the
“more of the output” class in Jeff Edmonds’ notation.

More on correctness of iterative algorithms

5/11/2010 CSE 3101 Lecture 1 90

Recall that
• Loop invariants allow you to reason about a single

iteration of the loop.
2. The test condition of the loop is not part of the invariant.
3. Design the loop invariant so that when the termination

condition is attained, and the invariant is true, then the
goal is reached: invariant + termination => goal

4. Create invariants which are
-- simple, and
-- capture all the goals of the algorithm (except
termination)

It is best to use mathematical symbols for loop invariants;
when this is too complicated, use clear prose and
common sense.

Loop invariants

It takes practice

5/11/2010 CSE 3101 Lecture 1 91

I/O specs: same as insertion sort

Algorithm: Given an array A of n integers, sort them by
repetitively selecting the smallest among the yet
unselected integers.

Loop invariant: at the beginning of the jth iteration
• The smallest j-1 values are sorted in descending order

in locations [1,j-1]

See if you can prove it.

Selection sort

Is this precise enough?
Swap the smallest integer with the integer currently in the
place where the smallest integer should go.

•Is this enough? No….

and the rest are in locations [n-j,n].

5/11/2010 CSE 3101 Lecture 1 92

Another kind of loop invariant

Narrowed the search space, e.g. Binary search
•Preconditions

–Key 25
–Sorted List

•Postcondition
–Find key in list (if present).

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

5/11/2010 CSE 3101 Lecture 1 93

Define Loop Invariant

• Maintain a sublist.
• If the key is contained in the original list, then the key is

contained in the sublist.
Define an iteration of loop

•Cut sublist in half.
•Determine which half the key would be in.
•Keep that half.
Caveat:
Invariant must not assume that the element is present in
the list. So it should say something like
“If the key is contained in the original list, then the key is
contained in the sublist.”

5/11/2010 CSE 3101 Lecture 1 94

Define an iteration of loop – contd.

key 25

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

It is faster not to check if the middle element is the key.

5/11/2010 CSE 3101 Lecture 1 95

The devil is in the details…

• Maintain a sublist with end points i & j

i j

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Does not matter which, but you need to be consistent.

•If the sublist has even length, which element is taken to
be mid?

Does not matter – choose right.

5/11/2010 CSE 3101 Lecture 1 96

An easy mistake…

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid, then
key is in left half:
[i,mid-1].

If key > mid, then
key is in right half:
[mid,j]

If the middle element is the key, it can be skipped over!

5/11/2010 CSE 3101 Lecture 1 97

A fix…

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half: [i,mid-1].

If key > mid,
then key is in
right half: [mid,j].

5/11/2010 CSE 3101 Lecture 1 98

Another possible fix…

• making the left half slightly bigger.

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid, then key
is in left half: [i,mid].

If key > mid, then key is
in right half: [mid+1,j].

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

No progress is made. Loop for ever!
5/11/2010 CSE 3101 Lecture 1 99

Lessons to be learnt

• Use the loop invariant method to think about
algorithms.

• Be careful with your definitions.
• Be sure that the loop invariant is always maintained.
• Be sure progress is always made.

5/11/2010 CSE 3101 Lecture 1 100

Running time of binary search

From now, we will omit details about accounting for
running time as follows. The details are tedious but can
be supplied easily. We will also ignore floors and
ceilings. This usually makes no difference.

The sublist is of size n, n/2, n/4, n/8,…,1. How many
steps is that?

Each step takes θ(1) time.

Total running time = θ(log n)

5/11/2010 CSE 3101 Lecture 1 101

Pseudocode for binary search

5/11/2010 CSE 3101 Lecture 1 102

Recall the definition of GCD(a,b). Recall also the high-
school technique for computing GCD(a,b).

Key observation: if (a>b) GCD(a,b) = GCD(a – b, b)

How do you prove this?

GCD: iterative algorithms

Any divisor of a,b divides a-b!

5/11/2010 CSE 3101 Lecture 1 103

Try the new idea

Input: <a,b>
= 4Output: GCD(a,b)
= <64,44>

GCD(a,b) = GCD(a-b,b)

GCD(64,44) = GCD(20,44)

GCD(20,44) = GCD(44,20)

GCD(44,20) = GCD(24,20)

GCD(24,20) = GCD(4,20)
GCD(4,20) = GCD(20,4)
GCD(20,4) = GCD(16,4)
GCD(16,4) = GCD(12,4)

GCD(12,4) = GCD(8,4)

GCD(8,4) = GCD(4,4)

GCD(4,4) = GCD(0,4)

What is the running time?

5/11/2010 CSE 3101 Lecture 1 104

Running time for GCD(a,b)

Input: <a,b> = <9999999999999,2>
<x,y> = <9999999999999,2>

= <9999999999997,2>
= <9999999999995,2>
= <9999999999993,2>
= <9999999999991,2>

Time =
Size =

O(a)
n = O(log(a))

= 2O(n)

5/11/2010 CSE 3101 Lecture 1 105

A faster algorithm for GCD(a,b)

<x,y> ⇒ <x-y,y>
⇒ <x-2y,y>
⇒ <x-3y,y>
⇒ <x-4y,y>
⇒ <x-iy,y>
⇒ <x rem y,y>
= <x mod y,y>
⇒ <y,x mod y>

But x mod y < y

5/11/2010 CSE 3101 Lecture 1 106

Try the improvement

Input: <a,b> = <44,64>
<x,y> = <44,64>

= <64,44>
= <44,20>
= <20, 4>
= < 4, 0>

GCD(a,b) = 4

GCD(a,b) = GCD(b,a mod b)

5/11/2010 CSE 3101 Lecture 1 107

A bad example

Input: <a,b> = <10000000000001,9999999999999>

= <2,1>
= <1,0>

<x,y>
= <9999999999999,2>

GCD(a,b) = GCD(x,y) = 1

= <10000000000001,9999999999999>

Little progress
Lots of progress

Every two iterations:
the value x decreases by at least a factor of 2.
the size of x decreases by at least one bit.

Running time: O(log(a)+log(b)) = O(n)

Lots of progress

5/11/2010 CSE 3101 Lecture 1 108

GCD(a,b)

5/11/2010 CSE 3101 Lecture 1 109

A design paradigm

Divide and conquer

5/11/2010 CSE 3101 Lecture 1 110

INPUT: Two pairs of integers, (a,b), (c,d) representing
complex numbers, a+ib, c+id, respectively.

OUTPUT: The pair [(ac-bd),(ad+bc)] representing the
product (ac-bd) + i(ad+bc)

Naïve approach: 4 multiplications, 2 additions.
Suppose a multiplication costs $1 and an addition cost
a penny. The naïve algorithm costs $4.02.

Q: Can you do better?

Multiplying complex numbers
(from Jeff Edmonds’ slides)

5/11/2010 CSE 3101 Lecture 1 111

• m1 = ac
• m2 = bd
• A1 = m1 – m2 = ac-bd
• m3 = (a+b)(c+d) = ac + ad + bc + bd
• A2 = m3 – m1 – m2 = ad+bc
• Saves 1 multiplication! Uses more additions. The

cost now is $3.03.
• This is good (saves 25% multiplications), but it leads to

more dramatic asymptotic improvement elsewhere!
(aside: look for connections to known algorithms)

Q: How fast can you multiply two n-bit numbers?

Gauss’ idea

5/11/2010 CSE 3101 Lecture 1 112

How to multiply two n-bit numbers.

X
* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * * * * * * * * * *

n2

Elementary
School algorithm

5/11/2010 CSE 3101 Lecture 1 113

How to multiply two n-bit numbers - contd.

X
* * * * * * * *
* * * * * * * *

* * * * * * * * * * * * * * * *

Elementary
School algorithm

Q: Is there a faster algorithm?

A: YES! Use divide-and-conquer.

5/11/2010 CSE 3101 Lecture 1 114

Divide and Conquer

Intuition:
•DIVIDE my instance to the problem into smaller
instances to the same problem.
•Recursively solve them.
•GLUE the answers together so as to obtain the answer
to your larger instance.
•Sometimes the last step may be trivial.

5/11/2010 CSE 3101 Lecture 1 115

Multiplication of two n-bit numbers

• X =
• Y =

• X = a 2n/2 + b Y = c 2n/2 + d

• XY = ac 2n + (ad+bc) 2n/2 + bd

a b

c d

MULT(X,Y):

If |X| = |Y| = 1 then RETURN XY

Break X into a;b and Y into c;d

RETURN

MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d)

5/11/2010 CSE 3101 Lecture 1 116

Time complexity of MULT

• T(n) = time taken by MULT on two n-bit numbers
• What is T(n)? Is it θ(n2)?
• Hard to compute directly
• Easier to express as a recurrence relation!
• T(1) = k for some constant k
• T(n) = 4 T(n/2) + c1n + c2 for some constants c1 and c2

• How can we get a θ() expression for T(n)?

MULT(X,Y):

If |X| = |Y| = 1 then RETURN XY

Break X into a;b and Y into c;d

RETURN

MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d)
5/11/2010 CSE 3101 Lecture 1 117

Time complexity of MULT

Make it concrete
• T(1) = 1
• T(n) = 4 T(n/2) + n

Technique 1: Guess and verify
T(n) = 2n2 –n
Holds for n=1
T(n) = 4 (2(n/2)2 –n/2 + n)

= 2n2 –n

5/11/2010 CSE 3101 Lecture 1 118

Time complexity of MULT

• T(1) = 1 & T(n) = 4 T(n/2) + n

Technique 2: Expand recursion
T(n) = 4 T(n/2) + n

= 4 (4T(n/4) + n/2) + n = 42T(n/4) + n + 2n
= 42(4T(n/8) + n/4) + n + 2n
= 43T(n/8) + n + 2n + 4n
= ………
= 4kT(1) + n + 2n + 4n + … + 2k-1n where 2k= n

GUESS
= n2 + n (1 + 2 + 4 + … + 2k-1)
= n2 + n (2k-1)
= 2 n2 - n [NOT FASTER THAN BEFORE]

5/11/2010 CSE 3101 Lecture 1 119

Gaussified MULT (Karatsuba 1962)

•T(n) = 3 T(n/2) + n
•Actually: T(n) = 2 T(n/2) + T(n/2 + 1) + kn

MULT(X,Y):

If |X| = |Y| = 1 then RETURN XY

Break X into a;b and Y into c;d

e = MULT(a,c) and f =MULT(b,d)

RETURN e2n + (MULT(a+b, c+d) – e - f) 2n/2 + f

5/11/2010 CSE 3101 Lecture 1 120

Time complexity of Gaussified MULT

• T(1) = 1 & T(n) = 3 T(n/2) + n
Technique 2: Expand recursion
T(n) = 3 T(n/2) + n

= 3 (3T(n/4) + n/2) + n = 32T(n/4) + n + 3/2n
= 32(3T(n/8) + n/4) + n + 3/2n
= 33T(n/8) + n + 3/2n + (3/2)2n
= ………
= 3kT(1) + n + 3/2n + (3/2)2n + … + (3/2)k-1n where 2k= n
= 3 log2 n + n(1 + 3/2 + (3/2)2 + … + (3/2)k-1)
= n log2 3 + 2n ((3/2)k-1)
= n log2 3 + 2n (n log2 3 /n -1)
= 2n log2 3 - 2n

Not just 25% savings!
θ(n2) vs θ(n1.58..)

5/11/2010 CSE 3101 Lecture 1 121

Multiplication Algorithms

Kindergarten ?
n2n

Grade School n2

Karatsuba n1.58…

Fastest Known n logn loglogn

Homework

3*4=3+3+3+3

