
5/5/2010 CSE 3101 Lecture 1 1

Instructor: Suprakash Datta (datta[at]cse.yorku.ca) ext 77875

Lectures: Tues (PSE 321), 7–10 PM

Office hours: Wed 4-6 pm (CSEB 3043), or by
appointment.

TA: TBA

Textbook: Cormen, Leiserson, Rivest, Stein.
Introduction to Algorithms (3nd Edition)

CSE 3101: Introduction to the Design and
Analysis of Algorithms

5/5/2010 CSE 3101 Lecture 1 2

Described in more detail on webpage
http://www.cse.yorku.ca/course/3101

Grading:
Tests: 50% (best 4 out of 5 tests)
Final: 50%
HW: 0%

Notes:
1. All assignments are individual.
2. There MAY be an extra credit test.

Topics: Listed on webpage.

CSE 3101: Administrivia

5/5/2010 CSE 3101 Lecture 1 3

CSE 3101: More administrivia

Plagiarism: Will be dealt with very strictly. Read the
detailed policies on the webpage.

Handouts (including solutions): in /cs/course/3101

Grades: will be on ePost.

Slides: Will usually be on the web the morning of the class.
The slides are for MY convenience and for helping you
recollect the material covered. They are not a
substitute for, or a comprehensive summary of, the
book.

Webpage: All announcements/handouts will be published
on the webpage -- check often for updates)

5/5/2010 CSE 3101 Lecture 1 4

CSE 3101: resources

• We will follow the textbook closely.

• There are more resources than you can possibly read
– including books, lecture slides and notes, online
texts.

• Jeff Edmonds’ (www.cse.yorku.ca/~jeff) textbook has
many, many worked examples.

• Andy Mirzaian (www.cse.yorku.ca/~andy) has very
good notes and slides for this course

• The downloadable text by Parberry on Problems in
Algorithms (http://www.eng.unt.edu/ian/books/free/) is
an invaluable resource for testing your understanding

5/5/2010 CSE 3101 Lecture 1 5

Recommended strategy

• Practice instead of reading.

• Try to get as much as possible from the lectures.

• Try to listen more and write less in class.

• If you need help, get in touch with me early.

• If at all possible, try to come to the class with a fresh
mind.

• Keep the big picture in mind. ALWAYS.

5/5/2010 CSE 3101 Lecture 1 6

The Big Picture

• The design and analysis of algorithms is a
FOUNDATIONAL skill -- needed in almost every field
in Computer Science and Engineering.

• Programming and algorithm design go hand in hand.

• Coming up with a solution to a problem is not of
much use if you cannot argue that the solution is
– Correct, and

– Efficient

5/5/2010 CSE 3101 Lecture 1 7

The Big Picture - 2

• Computation is a “natural” phenomenon – there is a
fairly developed science behind it and it studies what
can and cannot be done by a given computational
model.

• Typical questions are “what cannot be solved by a
Turing machine?” and “does there exist an efficient
algorithm for this problem?”

5/5/2010 CSE 3101 Lecture 1 8

Imagine - 0

• You take up a job at a bank. Your group leader defines
the problem you need to solve. Your job is to design
an algorithm for a financial application that you did not
encounter in your classes.

• How do you go about this task?

Designing algorithms – knowledge of paradigms.

5/5/2010 CSE 3101 Lecture 1 9

Imagine - 1

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

You want your team to
implement your idea – one
of them brings you this
code and argues that
anyone should see that
this sorts an array of
numbers correctly.

How can you be sure?

Correctness proofs – reasoning about algorithms

5/5/2010 CSE 3101 Lecture 1 10

Imagine - 2

• Two members of your team have designed alternative
solutions to the problem you wanted them to solve.
Your job is to select the better solution and reward the
designer. There are serious consequences for the
company as well for the designer.

Efficiency of algorithms – algorithm analysis

5/5/2010 CSE 3101 Lecture 1 11

Imagine - 3

• Your boss asks you to solve a problem – the best
algorithm you can come up with is very slow. He
wants to know why you cannot do better.

Intractability : reasoning about problems

5/5/2010 CSE 3101 Lecture 1 12

Previous courses (1020,1030,2011):
1. Figure out an algorithm.
2. Code it, debug, test with “good” inputs.
3. Some idea of running time.
4. Some well known algorithms:

e.g. QuickSort, Prim(MST), Dijkstra’s algorithm
5. Possibly: some idea of lower bounds.

3101: Problem-solving, Reasoning about ALGORITHMS
1. Design of algorithms
2. Correctness proofs.

Loop invariants
3. Efficiency analysis.
4. Comparison of algorithms (Better? Best?)
5. Intractability

Machine-independence
Rigorous

Primary Objectives

5/5/2010 CSE 3101 Lecture 1 13

Reasoning about PROBLEMS:
1. Some design paradigms.

Divide-and-Conquer, Greedy, Dynamic
Programming

2. Very simple data structures
Heaps

3. Lower bounds.
“Is your algorithm the best possible?”
“No comparison-based sorting algorithm can
have running time better than (n log n)”.

4. Complexity classes.
“Are there inherently hard problems?”
P vs NP

Primary objectives - continued

5/5/2010 CSE 3101 Lecture 1 14

A new way of thinking -- abstracting out the algorithmic
problem(s):

-- Extract the algorithmic problem and ignore the
“irrelevant” details

-- Focuses your thinking, more efficient problem solving.

Secondary objectives

5/5/2010 CSE 3101 Lecture 1 15

1. Needed for correctness proofs
Pre-condition – post-condition framework; similar ideas
used in program verification, Computer-aided design.

2. Needed for performance analysis
Computation of running time

Specific topics
1. (Very) elementary logic.
2. Elementary calculus.
3. Summation of series.
4. Simple counting techniques.
5. Simple proof techniques: Induction, proof by contradiction
6. Elementary graph theory

Role of mathematics

5/5/2010 CSE 3101 Lecture 1 16

1. Fact: Algorithms are always crucial
Applications:Computational Biology, Genomics

Data compression
Indexing and search engines
Cryptography
Web servers: placement, load balancing, mirroring
Optimization (Linear programming, Integer Programming)

2. Fact: Real programmers may not need algorithms……
but architects do!

3. Much more important fact: you must be able to
REASON about algorithms designed by you and
others. E.g., convincingly argue “my algorithm is correct”,
“my algorithm is fast”, “my algorithm is better than the existing

one”, “my algorithm is the best possible”, “our competitor cannot

possibly have a fast algorithm for this problem”,…

Why you should learn algorithms,
Or, Why this is a core course.

5/5/2010 CSE 3101 Lecture 1 17

1. Sorting a set of numbers (seen before)
2. Finding minimal spanning trees (seen before)
3. Matrix multiplication – compute A1A2A3A4….An

using the fewest number of multiplications
e.g.: A1 = 20 x 30, A2 = 30 x 60, A3 = 60 x 40,
(A1 A2) A3 => 20x 30 x 60 + 20 x 60 x 40 = 84000

vA1 (A2 A3) => 20x 30 x 40 + 30 x 60 x 40 = 96000

4. Traveling Salesman Problem: Find the minimum weight
cycle in an weighted undirected graph which visits each
vertex exactly once and returns to the starting vertex
Brute force: find intersections of all pairs of sides,
include points of each polygon that are inside the other.
Can we do better?

Some examples

5/5/2010 CSE 3101 Lecture 1 18

1. I/O specs: Needed for correctness proofs, performance
analysis.
E.g. for sorting:
INPUT: A[1..n] - an array of integers
OUTPUT: a permutation B of A such that

B[1]  B[2]  ….  B[n]

2. CORRECTNESS: The algorithm satisfies the output
specs for EVERY valid input.

3. ANALYSIS: Compute the running time of the algorithm,
the space requirements, number of cache misses, disk
accesses, network accesses,….

Reasoning (formally) about algorithms

5/5/2010 CSE 3101 Lecture 1 19

Pseudocode

• Machine/language independent statements.

• Very simple commands: assignment, equality tests,
branch statements, for/while loops, function calls.

• No objects/classes (usually).

• Comments, just like in real programs.

• Should be at a level that can be translated into a
program very easily.

• As precise as programs, without the syntax
headaches

• My notation can vary slightly from the book.

You can use pseudocode, English or a combination.

5/5/2010 CSE 3101 Lecture 1 20

Q1. Find the max of n numbers (stored in array A)
Formal specs:
INPUT: A[1..n] - an array of integers
OUTPUT: an element m of A such that A[j]  m,

1  j  length(A)

Find-max (A)
1. max  A[1] How many comparisons?
2. for j  2 to length(A)
3. do if (max < A[j])
4. max  A[j]
5. return max

Q2. Can you think of another algorithm? Take a minute….
How many comparisons does it take?

A simple example

Aside

• How many nodes does a binary tree with n leaves
have?

5/5/2010 CSE 3101 Lecture 1 21

Finding the maximum – contd.

• Proposition: Every full binary tree with n leaves has
n-1 internal nodes.

• Corollary: Any “tournament algorithm” to find the
maximum uses n-1 comparisons, as long it uses
each element exactly once in comparisons.

5/5/2010 CSE 3101 Lecture 1 22

5/5/2010 CSE 3101 Lecture 1 23

Correctness

• How can we show that the algorithm works
correctly for all possible inputs of all possible
sizes?

• Exhaustive testing not feasible.

• Analytical techniques are useful essential
here.

5/5/2010 CSE 3101 Lecture 1 24

INPUT: A[1..n] - an array of integers
OUTPUT: an element max of A such that A[j]  max,

1  j  length(A)
Find-max (A)
1. max  A[1]
2. for j  2 to length(A)
3. do if (max < A[j])
4. max  A[j]
5. return max

Proof 1 [by contradiction]: Suppose the algorithm is incorrect. Then
for some input A,
(a) max is not an element of A or
(b) (j | max < A[j]).
max is initialized to and assigned to elements of A – so (a) is
impossible. WHY?
(b) After the jth iteration of the for-loop (lines 2 – 4), max  A[j].
From lines 3,4, max only increases.
Therefore, upon termination, max  A[j], which contradicts (b).

Prove that for any valid
Input, the output of
Find-max satisfies the
output condition.

Correctness Proof 1

5/5/2010 CSE 3101 Lecture 1 25

Correctness Proof 1 - comments

• The preceding proof reasons about the whole
algorithm

• It is possible to prove correctness by induction as
well: this is left as an exercise for you.

• What if the algorithm/program was very big and had
many function calls, nested loops, if-then’s and other
standard features?

• Need a simpler, more “modular” strategy.

5/5/2010 CSE 3101 Lecture 1 26

INPUT: A[1..n] - an array of integers
OUTPUT: an element m of A such that m  A[j],

1  j  length(A)
Find-max (A)
1. max  A[1]
2. for j  2 to length(A)
3. do if (max < A[j])
4. max  A[j]
5. return max

Proof 2 [use loop invariants]:
(identify invariant) At the beginning of iteration j of for loop, max contains

the maximum of A[1..j-1].
(Proof) Clearly true for j=2. For j > 2, assume that invariant holds for j-1. So

at the beginning of iteration j-1 max contains the maximum of A[1..j-2].
Case (a) A[j] is the maximum of A[1..j]. In lines 3,4, max is set to A[j].
Case (b) A[j] is not the maximum of A[1..j], so the maximum of A[1..j] is in
A[1..j-1]. By our assumption max already has this value and by lines 3-4
max is unchanged in this iteration.

Prove that for any valid
Input, the output of
Find-max satisfies the
output condition.

Correctness Proof - 2

5/5/2010 CSE 3101 Lecture 1 27

INPUT: A[1..n] - an array of integers
OUTPUT: an element m of A such that m  A[j],

1  j  length(A)
Find-max (A)
1. max  A[1]
2. for j  2 to length(A)
3. do if (max < A[j])
4. max  A[j]
5. return max

Proof using loop invariants - continued:
We proved that the invariant holds at the beginning of iteration j
for each j used by Find-max.

Upon termination, j = length(A)+1. (WHY?)
The invariant holds, and so max contains the maximum of A[1..n]
-- STRUCTURED PROOF TECHNIQUE!
-- VERY SIMILAR TO INDUCTION!

We will see more non-trivial examples later.

Correctness Proof – continued

5/5/2010 CSE 3101 Lecture 1 28

• Measures of efficiency:

–Running time

–Space used

– others

• Efficiency as a function of input size (NOT value!)

–Number of data elements (numbers, points)

–Number of bits in an input number

e.g. Find the factors of a number n,

Determine if an integer n is prime

Model: What machine do we assume? Intel? Motorola?
P4? Atom? GPU?

Analysis of Algorithms

