
CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

CSE2031 Software Tools - System Calls,
Processes

Summer 2010

Przemyslaw Pawluk

Department of Computer Science and Engineering
York University

Toronto

June 22, 2010

1 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

Table of contents

1 Files - review

2 Processes

Low-level process creation

Control of process

3 Filters

2 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

Plan

1 Files - review

2 Processes

Low-level process creation

Control of process

3 Filters

3 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

High-level access

Methods
fopen – opens a file and returns a pointer to FILE structure

fclose – closes a file (also writes a buffer content if any)

fflush – writes a buffer into a file

read

getc – reads one char from the input file
fscanf – reads input from file like scanf

write

putc – prints a char into file (buffered)
fprintf – prints a formatted string into a file

4 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

Low-level access

Methods
fopen – opens a file and returns file descriptor

create – closes a file (also writes a buffer content if any)

read – reads n bytes form file into a buffer

write – writes n bytes form buffer into a file

5 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

Plan

1 Files - review

2 Processes

Low-level process creation

Control of process

3 Filters

6 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

Low-level process creation

How to call a program from another program?

C allows us to call a program from our code (without returning) by two
commands execlp and execvp.

7 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

execlp

1 e x e c l p (PATH, PROGNAME, ARGS . . .) ;

PATH is a path containing a program name

PROGNAME is a first element of the argv array

ARGS are subsequent command line arguments where the last one
is NULL (0)

1 e x e c l p (” da te ” , ” d ate ” , (char ∗) 0) ;

8 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

execvp

Works exactly the same way, however accepts a array or arguments, so
you do not need to know a number of arguments in advance.

9 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

How it works?

1 i n t main (i n t argc , char ∗ a r g v []) {
2 e x e c l p (” echo ” , ” echo ” , a r g v [1]) ;
3 e r r o r (” cannot e x e c u t e echo %s ” , a r g v [1]) ;
4 }

10 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

fork

Execute and get the control back

fork allows us to call a program and regain control after running a
program with execlp/execvp

How to use it?

1 i n t p r o c i d = f o r k () ;
2 i f (p r o c i d ==−1){
3 e r r o r (” cannot c r e a t e c h i l d p r o c e s s ”) ;
4 e x i t (−1);
5 }
6 e l s e i f (p r o c i d ==0){ /∗ c h i l d p r o c e s s ∗/
7 e x e c l p (” data ” , ” data ” , (char ∗) 0) ;
8 e r r o r (” cannot e x e c u t e data ”) ;
9 } e l s e { /∗ Parent ∗/

10 /∗ Parent can do someth ing or wa i t f o r a c h i l d ∗/
11 w a i t (& s t a t u s) ;
12 }

11 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

wait and status

1 w a i t (& s t a t u s) ;

wait makes parent to wait for a result from child

status encodes eight bits (low-order) an exit status of child where
0 mean normal termination and non-zero some kind of error

12 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

Signals

This is not covered by any of our textbooks!

The signals are defined in the include file <signal.h>.
SIGABRT – Abnormal termination, such as instigated by the abort
function. (Abort.)
SIGFPE – Erroneous arithmetic operation, such as divide by 0 or
overflow. (Floating point exception.)
SIGILL – An invalid object program has been detected. This usually
means that there is an illegal instruction in the program. (Illegal
instruction.)
SIGINT – Interactive attention signal; on interactive systems this is
usually generated by typing some break-in key at the terminal.
(Interrupt.)
SIGSEGV – Invalid storage access; most frequently caused by
attempting to store some value in an object pointed to by a bad
pointer. (Segment violation.)
SIGTERM – Termination request made to the program. (Terminate.)

13 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

Send and receive signals

Receive
void (*signal (int sig, void (*func)(int)))(int);

Send
int raise (int sig);

14 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

Plan

1 Files - review

2 Processes

Low-level process creation

Control of process

3 Filters

15 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

What is a filter in Unix?

Filter is a program that has following properties:

Read text input line by line (from stdin by default)

Perform some transformation

Write some output (to stdout by default)

16 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

What can we do with filters?

Filters are very common tools in Unix-like systems. Many standard
commands are actually filters (grep, cut etc.).

Filters can work together as parts of pipes

grep pawluk marks.txt | cut -f4

17 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

How to write a filter in C

Your program should do following things:

Process the stdin line by line

Do some transformations based on the input read

Write output to the stdout

Write any errors into stderr

18 / 18

CSE2031
Software
Tools -

System Calls,
Processes

Przemyslaw
Pawluk

Files - review

Processes

Low-level
process
creation

Control of
process

Filters

Example

Reverse
Let’s write a filter that reverses a word in the stdin and writes result to
the stdout. We will call it reverse.

19 / 18

	Files - review
	Processes
	Low-level process creation
	Control of process

	Filters

