
CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

CSE2031 Software Tools - Pointers, Allocations,
Structures once again

Summer 2010

Przemyslaw Pawluk

Department of Computer Science and Engineering
York University

Toronto

June 15, 2010

1 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Table of contents

1 Midterm summary and review

Pointers

Typedef

Structures and Unions

Complex structures

2 File access in C

FILE and file pointers

3 System calls

Low level access to files in UNIX

2 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Plan

1 Midterm summary and review

Pointers

Typedef

Structures and Unions

Complex structures

2 File access in C

FILE and file pointers

3 System calls

Low level access to files in UNIX

3 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Exam summary

You did well
Standard input processing

Testing

”Debugging”

Weak points

Memory allocation

Pointers (especially pointers to functions)

Structures

Typedef

4 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

How do we define pointers?

Pointers to variables

1 i n t ∗ p i ;
2 f l o a t ∗ p f ;

Pointers to structures

1 s t r u c t s t r ∗ p i ;

Pointers to functions

1 r e t u r n e d t y p e (∗ pfoo) (t y p e s o f p a r a m s) ;
2 f l o a t (∗ p f) (i n t ∗ , void ∗) ;

5 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Memory allocation

Functions

void * malloc(int size);

void * calloc(int n, int size);

void * realloc(void * ptr, int size);

void free(void *ptr);

1 #d e f i n e SIZE 10
2 i n t main (){
3 i n t i ;
4 char ∗ b u f f e r = (char ∗) m a l l o c (SIZE) ;
5 i f (b u f f e r==NULL) e x i t (1) ;
6 f o r (i =0; i<SIZE ; i ++)
7 b u f f e r [n]= rand ()%26+ ’ a ’ ;
8 b u f f e r [SIZE]= ’ \0 ’ ;
9 p r i n t f (”Random s t r i n g : %s \n” , b u f f e r) ;

10 f r e e (b u f f e r) ;
11 return 0 ;
12 }6 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Syntax

The syntax is the same as when defining variable (except typedef).

Variable - x is variable of type int*

1 i n t ∗x ;

Type - x is equivalent type to int *

1 typedef i n t ∗x ;
2 x i ; /∗ e q u i v a l e n t to i n t ∗ i ; ∗/

7 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Defining new or renaming existing type

Typedef

1 /∗ aaa i s new name f o r i n t ∗/
2 typedef i n t aaa ;
3 /∗ cAr100 i s new name f o r a r r a y o f 100 c h a r s ∗/
4 typedef char cAr100 [1 0 0] ;
5 /∗ f u n c i s a f u n c t i o n t a k i n g
6 two i n t s and r e t u r n i n g i n t ∗/
7 typedef i n t f u n c (int , i n t) ;
8 /∗ pfunc i s a p o i n t e r to f u n c t i o n
9 t a k i n g two i n t s and r e t u r n i n g i n t ∗/

10 typedef i n t (∗ pfunc) (int , i n t) ;
11 /∗ t S t r i s a e q u i v a l e n t to sname ,
12 t p S t r i s e q u i v a l e n t to ∗sname∗/
13 typedef s t r u c t sname{
14 member type1 member name1 ;
15 . . .
16 } t S t r , ∗ t p S t r ;

8 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Structures

How structures are defined?

1 s t r u c t sname{
2 member type1 member name1 ;
3 member type2 member name2 ;
4 . . .
5 member typeN member nameN ;
6 } s v a r 1 , ∗ p s v a r 1 ;

9 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Linked List

Definition

List can be empty (NULL) or

List has a head (list element) and tail (list)

Each element has a pointer to the next element (last points to
NULL)

1 s t r u c t l i s t N o d e {
2 i n t x ;
3 s t r u c t l i s t N o d e ∗ n e x t ;
4 } ∗head ;
5 typedef s t r u c t l i s t N o d e l i s t ;

10 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Operations

Add to the end

1 l i s t ∗ addEnd (l i s t ∗head , i n t newVal){
2 l i s t ∗new = (l i s t ∗) m a l l o c (s i z e o f (l i s t)) ;
3 i f (head==NULL)
4 return new ;
5 whi le ((head−>n e x t)!=NULL)
6 head=head−>n e x t ;
7 head−>n e x t=new ;
8 return head ;
9 }

11 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Operations

Remove head

1 l i s t ∗ f r e e F i r s t (l i s t ∗head){
2 l i s t ∗tmp ;
3 i f (head==NULL)
4 return NULL ;
5 tmp=head−>n e x t ;
6 f r e e (head) ;
7 return tmp ;
8 }

12 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Binary tree

Definition
Tree can be empty or

Tree has a root (tree node) and two children (trees)

Each node has two pointers to left and right child

1 s t r u c t t reeNode {
2 i n t x ;
3 s t r u c t t reeNode ∗ l c h i l d ;
4 s t r u c t t reeNode ∗ r c h i l d ;
5 } ∗ r o o t ;
6 typedef t reeNode t r e e ;

13 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Operations

Add leaf (l¡p¡=r)

1 t r e e ∗add (t r e e ∗ root , t r e e ∗new){
2 i f (r o o t==NULL)
3 return new ;
4 i f (root−>x>new−>x && root−> l c h i l d !=NULL)
5 add (root−> l c h i l d , new) ;
6 e l s e i f (root−>x>new−>x && root−> l c h i l d==NULL){
7 root−> l c h i l d=new ;
8 e l s e i f (root−>x<=new−>x && root−>r c h i l d !=NULL)
9 add (root−>r c h i l d , new) ;

10 e l s e
11 root−>r c h i l d=new ;
12 return r o o t ;
13 }

14 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Operations

This kind of traverse can be used to print entire tree.

In order traverse

1 void i n O r d e r (t r e e ∗ r o o t){
2

3 i f (r o o t==NULL)
4 return ;
5 i n O r d e r (root−> l c h i l d) ;
6 p r i n t f (”%d , ” , root−>x) ;
7 i n O r d e r (root−>r c h i l d) ;
8 return ;
9 }

15 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Operations

This kind of traverse can be used to free entire tree.

Post order traverse

1 void p o s t O r d e r (t r e e ∗ r o o t){
2

3 i f (r o o t==NULL)
4 return ;
5 i n O r d e r (root−> l c h i l d) ;
6 i n O r d e r (root−>r c h i l d) ;
7 p r i n t f (”%d , ” , root−>x) ; /∗ put f r e e (r o o t) to f r e e memory∗/
8 return ;
9 }

16 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Plan

1 Midterm summary and review

Pointers

Typedef

Structures and Unions

Complex structures

2 File access in C

FILE and file pointers

3 System calls

Low level access to files in UNIX

17 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Files in C

stdio.h provides necessary declarations

FILE is a structure holding all information about file

File access

1 FILE ∗ f p ; /∗ p o i n t e r to f i l e ∗/
2 char name [] = ” t e s t . t x t ” ; /∗name o f f i l e ∗/
3 char mode [] = ” r ” ; /∗mode − r e a d ∗/
4 f p = fop en (name , mode) ;

18 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Possible modes

r – read

w – write (overwrites)

a – adds content to the end of the file

b – required for binary files in some cases

If file does not exist and is opened in ”w” or ”a” mode it is created.
Opening file that does not exist in ”r” mode causes error (fopen returns
NULL).

19 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

How can we read or write file?

Similarly to the standard input there are several possible ways of
reading input from files:

simplest one

int getc(FILE *fp) – reads next char from file, returns EOF for
end of file or error
int getc(int c, FILE *fp) – writes a character c to the file
and returns written char or EOF if error occurs

formatted I/O, works like scanf and printf

int fscanf(FILE *fp, char *format, ...)

int fprintf(FILE *fp, char *format, ...)

20 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Closing file!

fclose(FILE *fp);

closes a file pointed by fp

brakes a connection between program and file

Flushes a buffer where output of putc is collected (you can
use int fflush(FILE *fp) to do it without closing file

21 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Example

Let’s write a program that will write an input to the file provided as a
parameter.

22 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Plan

1 Midterm summary and review

Pointers

Typedef

Structures and Unions

Complex structures

2 File access in C

FILE and file pointers

3 System calls

Low level access to files in UNIX

23 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

System calls library

System interface

UNIX allows us to use several services through a set of system calls,
which are functions of operating system that may be called by our
programs.

Why system calls?

It is to show you how previously described functions are implemented
with functionality provided by UNIX OS.

24 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

File descriptors

In UNIX every peripheral device (including screen and keyboard) is seen
as a file. System opens for you three standard files stdin, stdout and
stderr.
UNIX uses small non-negative ints (file descriptors) to identify all files.
Standard files are identified by default by 0-stdin, 1-stdout and 2-stderr.

On our systems (Prism lab) all required definitions are in header
sys/file.h You have to include it to use system calls.

25 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Open vs. Create

Open

1 i n t f d ;
2 f d = open (name , f l a g s , perms) ;

Create

1 i n t f d ;
2 f d = c r e a t e (name , perms) ;

name is a char* containing a path to the file

flags is an int that specifies how the file is to be opened

O_RDONLY – open for reading only
O_WRONLY – open for writing only
O_RDWR – open for both

perms – is an int containing information what permissions should
be set on the file. We will use 0 as a default value

26 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Other options

Other possible values of flags

O_APPEND Append new information to the end of the file.

O_TRUNC Initially clear all data from the file.

O_CREAT If the file does not exist, create it. If the O_CREAT option
is used, then you must include the third parameter.

O_EXCL Combined with the O_CREAT option, it ensures that the
caller must create the file. If the file already exists, the call will fail.

27 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Permissions

Values of perms

S_IRUSR Set read rights for the owner to true.

S_IWUSR Set write rights for the owner to true.

S_IXUSR Set execution rights for the owner to true.

S_IRGRP Set read rights for the group to true.

S_IWGRP Set write rights for the group to true.

S_IXGRP Set execution rights for the group to true.

S_IROTH Set read rights for other users to true.

S_IWOTH Set write rights for other users to true.

S_IXOTH Set execution rights for other users to true.

28 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Close

brakes connection between descriptor and file

frees the file descriptor so it can be used for another file

it is done by system on exit or return from main.

29 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Unlink

Removes the file pointed by name from the file system!

It corresponds to remove from standard library

Look out there is no warning before removing!!!

30 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

File access - read and write

1 i n t r e a d (i n t fd , char ∗buf , i n t n) ;
2 i n t w r i t e (i n t fd , char ∗buf , i n t n) ;

fd – file descriptor

buf – an array of characters where the data is to go to or came
from

n – number of bytes to be transfered

Both return a number of bytes transfered (read or wrote)

31 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Example

Let’s write a program that will implement a copy functionality. It takes
two paths and copy first into second.

32 / 33

CSE2031
Software
Tools -

Pointers,
Allocations,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary and
review

Pointers

Typedef

Structures
and Unions

Complex
structures

File access in
C

FILE and file
pointers

System calls

Low level
access to
files in UNIX

Random access

Read and write are normally sequential. We can use, however, lseek
function to move our cursor in the file into any place.

1 long l s e e k (i n t fd , long o f f s e t , i n t o r i g i n) ;

sets the position in the file whose descriptor is fd to offset calculated
relatively to the location specified by origin Origin can be:

0 – means offset is calculated from the beginning of the file

1 – means offset is calculated from current position

2 – means offset is calculated from the end of the file

1 /∗go to th e b e g i n n i n g o f t he f i l e ∗/
2 l s e e k (fd , 0L , 0) ;
3

4 /∗go to th e end o f t he f i l e ∗/
5 l s e e k (fd , 0L , 2) ;

33 / 33

	Midterm summary and review
	Pointers
	Typedef
	Structures and Unions
	Complex structures

	File access in C
	FILE and file pointers

	System calls
	Low level access to files in UNIX

