CSE2031
Software
Tools -
Pointers,
Alloca-
tions,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary

Pointers

Typedef

File access
in C

FILE and file
pointers
System
calls

files in UNIX

1/33

CSE2031
Software
Tools -
Pointers,
All
tions,
Structus
on n

Przen w
Pawluk

Midterm

File access
inC

YORK

CSE2031
Software
Tools -
Pointers,
Alloca-
tions,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary
and review
Pointers
Typedef
Structures

File access
inC

FILE and file
pointers

System

CSE2031 Software Tools - Pointers, Allocations,

Structures once again

Summer 2

Przemyslaw Pawluk

Department of Computer Science and Engineering
York University
Toronto

June 15, 2010

@ Midterm summary and review

Pointers

o Typedef

@ Structures and Unions

Complex structures

@ File access in C

FILE and file pointers

© System calls

@ Low level access to files in UNIX

Exam summary

You did well

o Standard input processing

o Testing

" Debugging”

4

Memory allocation
Pointers (especially pointers to functions)
Structures

Typedef

Notes

A\

Notes

Notes

YORK

How do we define pointers?

e Notes
LSEL‘USI
E4ll Pointers to variables
T [.
L]l intx pi;
Structures
> float xpf;
Przemyslaw y
Pawluk
Mideerm Pointers to structures
ity
pines 1 struct strx pi;
I Pointers to functions
inC
prll returned_type (*pfoo)(types-of_params);
System float (xpf)(int*, voidx);
Memory allocation
ool Functions Notes
Software
oo~ @ void * malloc(int size);
e @ void * calloc(int n, int size);
.?;Z:mfa?n o void * realloc(void * ptr, int size);
rzer v 1 id * s
Pz o void free(void *ptr);
Midterm
#define SIZE 10
int main(){
el int i;
adhics char x buffer = (char x) malloc (SIZE);
T if (buffer==NULL) exit (1);
for (i=0; i<SIZE; i++)
buffer [n]=rand()%26+'a";
buffer [SIZE]="\0";
printf ("Random_string:._%s\n", buffer);
free (buffer);
11 return 0;
12 }
e Notes
CSE2031
Software
T&?O‘S'
i The syntax is the same as when defining variable (except

tions,

Eee typedef).

przemysiow Bl Variable - x is variable of type int*

ESUNlT int xXx;
summary

and review y

Type - x is equivalent type to int *

Al typedef int x*x;
inC
2 x i; /xequivalent to int xi; %/

FILE and file
pointers

System

CSE20!
Software
Tools -
Pointers,
Alloca-
tions,
Structures
once again

Pawluk

Midterm
summar

File access
inC

pointers

System

CSE2031
Software
Tools -

Przen

Midterm

summary €3

and review

and Unions

File access
inC

CSE2031
Software
Tools -
Pointers,
Alloca-
tions,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary
and review

File access
inC

FILE and file
pointers

System

Defining new or renaming existing type

/*aaa is new name for intx/
typedef int aaa;
/*cArl00 is new name for array of 100 charsx/
typedef char cAr100[100];
/+func is a function taking
two ints and returning intx/
typedef int func(int, int);
/xpfunc is a pointer to function
taking two ints and returning intx/
typedef int (xpfunc)(int, int);
/xtStr is a equivalent to sname,
tpStr is equivalent to kxsnamex/
typedef struct sname{

member_typel member_namel;

} tStr, *tpStr;

Notes

Structures

How structures are defined?

WPl struct sname{
2 member_typel member_namel;

member_type2 member_name2;

5 member_typeN member_nameN ;

} s_varl, xps_varl;

Linked List

Definition
o List can be empty (NULL) or
o List has a head (list element) and tail (list)

o Each element has a pointer to the next element (last points
to NULL)

struct listNode{
int x;
struct listNode xnext;
} xhead;
5 typedef struct listNode list;

Notes

Notes

Operations

. Notes
CSE2031
Software
Tools -
Pointers,
A\If:lca— Add to the end
S
SRl |istx addEnd(list xhead, int newVal){
Przemyslaw g list *new = (list %) malloc(sizeof(list));
3 if (head=NULL)
Midterm FEGITD mEw:
P while ((head—>next)!=NULL)
Ul head=head—>next;
and Unions
Comle head—>next=new;
File access return head;
inC }
FILE and file
System
calls
files in UNIX
Operations
Notes
listx freeFirst(list xhead){
list xtmp;
if (head=NULL)
return NULL;

tmp=head—>next ;

free (head);

return tmp;

::"wlleiat:cess }
YORK
Binary tree

i Notes

Bl Definition

Alloca-

i @ Tree can be empty or
Structures)
once again @ Tree has a root (tree node) and two children (trees)
Przemyslaw . . .
Paiak o Each node has two pointers to left and right child
Midterm
ey

nd review
Pl struct treeNode{

Typedef . .

Snz.ﬁw: 2 nt x;

ctnmlgx 3 struct treeNode xlchild;

4 struct treeNode xrchild;

File access

(s 5 } xroot;

FILE and file
typedef treeNode tree;

pointers
System
4

calls

Operations

Tools -
Pointers,

Alloca- 1

tions,
Structures p3
once again

Przemyslaw
Pawluk M

File access 0
inC
FILE and file ji

pointers

System

Add leaf (

iP
tree xadd(tree xroot, tree xnew){
if (root=NULL)
return new;
if (root—>x>new—>x && root—>lchild!=NULL)
add(root—>lchild , new);

else if(root—>x>new—>x && root—>Ichild=NULL){
root—>Ilchild=new;
else if(root—>x<=new—>x && root—>rchild!=NULL)

add(root—>rchild , new);

else
root—>rchild=new;
return root;

Operations

CSE2031
Software
Tools -

Complex

6

File access
inC

CSE2031
Softwar

a-
tions,
Structures
once again

Przemyslaw

Pawluk

Midterm

Complex

File access
inC

FILE and file
pointers

System
calls

if (root=—NULL)

return;
inOrder(root—>Ichild);
printf("%d,.", root—>x);
inOrder(root—>rchild);
return;

Operations

This kind of traverse can be used to free entire tree.)

Post order traverse

1 void postOrder(tree *root){

2
if (root=NULL)
return;
inOrder(root—>Ichild);
6 inOrder (root—>rchild);

printf("%d,.", root—>x); /xput free(root) to
return;

Notes

Notes

Notes

free memorys

Files in C

. Notes
CSE2031
Software
Tools -
Pointers,
Alloca-
tions, . . .
Structures @ stdio.h provides necessary declarations
once again
Brsemyelow @ FILE is a structure holding all information about file
Pawluk
Midterm
FILE =fp; /xpointer to filex/
char name[] = "test.txt"; /xname of filex/
char mode[] = "r"; /*mode — readx/
el fp = fopen(name, mode);
inC
FILE and file
i
System
calls
files in H‘N\X
18/33
Possible modes
Notes
CSE2031
Software
Tools -
Pointers,
All
tions,
Structures
once again @ r — read
A o w — write (overwrites)
Midterm @ a — adds content to the end of the file
@ b — required for binary files in some cases
If file does not exist and is opened in "w" or "a" mode it is
created. Opening file that does not exist in "r" mode causes
Wl crror (fopen returns NULL).
FILE and file
e
YORK
How can we read or write file?
_ Notes
CSE2031
Software
Tools -
Pointers,
Alloca-
tions, Similarly to the standard input there are several possible ways of

Structures

EOPEN reading input from files:

Przemyslaw

Pawluk @ simplest one

Midterm e int getc(FILE xfp) — reads next char from file, returns
e, EOF for end of file or error

R e int getc(int c, FILE *fp) — writes a character c to the
Structures file and returns written char or EOF if error occurs

Gty o formatted 1/O, works like scanf and printf

_leecaccess o int fscanf(FILE *fp, char *format, ...)

= e int fprintf(FILE *fp, char *format, ...)

pointers

System

Closing file!

) Notes
CSE2031
Software
Tools -
Pointers,

Alloca-
tions,
Structures

B fclose(FILE *fp); J

Przemyslaw
Pawluk

@ closes a file pointed by fp

Midterm

@ brakes a connection between program and file

o Flushes a buffer where output of putc is collected (you
can use int fflush(FILE *fp) to do it without closing file

File access
in C

FILE and file
pointers

System
calls

files in UNIX

21/33

Notes

CSE2031
Software
Tools -

Pointers,

All
tions,
Structures
once again

Przen w
Pawluk

Let's write a program that will write an input to the file provided

Midterm
as a parameter.

File access
inC

FILE and file
pointers.

YORK

System calls library

o Notes
CSE2031
Software
Tools -
Pointers,

Alloca-
tions,

e System interface

once again
e UNIX allows us to use several services through a set of system
Pavilulc calls, which are functions of operating system that may be called

Midterm by our programs.
summary
and review

Pointers

et Why system calls?

Sty

tures

It is to show you how previously described functions are

implemented with functionality provided by UNIX OS.

File access
inC

FILE and file
pointers

File descriptors

CSE2031
Software
Tools -
Pointers,
Alloca-
tions,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary
and review

File access
in C

FILE and file
pointers
System
calls

Low level

files in UNIX

25/33

CSE2031
Software

1

2 fd = open(name, flags, perms);

Pawluk

Midterm .
summary int fd;

and review

> fd — create(name, perms);

Complex
structures

File access
inC

Low level
access to
files in UNIX

26/33

CSE2031
Software
Tools -
Pointers,
Alloca-
tions,
Structures
once again

Przemyslaw
Pawluk

Midterm
summary
and review

File access
in C

FILE and file
pointers
System
calls

Low level
access to
files in UNIX

27/33

In UNIX every peripheral device (including screen and keyboard)
is seen as a file. System opens for you three standard files stdin,
stdout and stderr.

UNIX uses small non-negative ints (file descriptors) to identify all
files. Standard files are identified by default by 0-stdin, 1-stdout
and 2-stderr.

On our systems (Prism lab) all required definitions are in header
sys/file.h You have to include it to use system calls.

Open vs. Create

int fd;

A\

@ name is a char* containing a path to the file
o flags is an int that specifies how the file is to be opened
o O_RDONLY — open for reading only
e O_WRONLY — open for writing only
o O_RDWR — open for both
@ perms — is an int containing information what permissions
should be set on the file. We will use 0 as a default value

Other options

Other possible values of flags

@ 0_APPEND Append new information to the end of the file.

o O_TRUNC Initially clear all data from the file.

o O_CREAT If the file does not exist, create it. If the 0_CREAT
option is used, then you must include the third parameter.

o 0_EXCL Combined with the O_CREAT option, it ensures that
the caller must create the file. If the file already exists, the
call will fail.)

Notes

Notes

Notes

Permissions

CSE2031

Software

Tools -

Pointers,

ointers Values of perms
tions,

S @ S_IRUSR Set read rights for the owner to true.

once again

orsemysion @ S_IWUSR Set write rights for the owner to true.
Pauluk @ S_IXUSR Set execution rights for the owner to true.
Midterm o S_IRGRP Set read rights for the group to true.
@ S_IWGRP Set write rights for the group to true.
ctures @ S_IXGRP Set execution rights for the group to true.
e o S_IROTH Set read rights for other users to true.
e o S_IWOTH Set write rights for other users to true.
S,‘,lﬁf[;"f b o S_IXOTH Set execution rights for other users to true. |
e Ui

&

CSE2031

tions,
Structures
once again

Pawluk @ brakes connection between descriptor and file

o frees the file descriptor so it can be used for another file

@ it is done by system on exit or return from main.

File access
inC

Low level

access to
files in UNIX

YORK

u Unlink

CSE2031
Software
Tools -
Pointers,
Alloca-
tions,
Structures
once again

Przemyslaw

Pawluk @ Removes the file pointed by name from the file system!
Midterm @ It corresponds to remove from standard library
summary
E‘df @ Look out there is no warning before removing!!!
Tv,p:dg}
Structures

Unions
Complex
structures

File access
in C

FILE and file
pointers
System
calls

Low level
access to
files in UNIX

30/33

Notes

Notes

Notes

File access - read and write

CSE2031
Software
Tools -
Pointers,
Alloca-

tions,

SetEl1 int read (int fd, char xbuf, int n);
s i
2 int write(int fd, char xbuf, int n);

Przemyslaw
Pawluk

Midterm

o fd — file descriptor
@ buf — an array of characters where the data is to go to or
came from

Unions
Complex

structures

@ n — number of bytes to be transfered
File access
inC

FILE and file

@ Both return a number of bytes transfered (read or wrote)

System

Low level

o
files in UNIX

CSE2031

tions,
Structures
once again

Let's write a program that will implement a copy functionality. It
takes two paths and copy first into second.

File access
inC

Low level

access to
files in UNIX

YORK

Random access

Coraos Read and write are normally sequential. We can use, however,
oftware

e 1seek function to move our cursor in the file into any place.
ointers,

Alloca-

tions,
faublll long lseek (int fd, long offset, int origin);

once again

Przemyslaw

Pawluk
i sets the position in the file whose descriptor is £d to offset
idterm . . o .. o
summary calculated relatively to the location specified by origin Origin
R can be:
Typedef . .) .
Structures o 0 — means offset is calculated from the beginning of the file
Complex . .
structures o 1 — means offset is calculated from current position
File access . .
inC @ 2 — means offset is calculated from the end of the file
e
System . .)
L /«go to the beginning of the filex/
ihtw2 Iseek (fd, OL, 0);

4 /xgo to the end of the filex/
5 lseek(fd, OL, 2);

Notes

Notes

Notes

	Midterm summary and review
	Pointers
	Typedef
	Structures and Unions
	Complex structures

	File access in C
	FILE and file pointers

	System calls
	Low level access to files in UNIX

