
CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

CSE2031 Software Tools - UNIX scripting

Summer 2010

Przemyslaw Pawluk

Department of Computer Science and Engineering
York University

Toronto

July 20, 2010

1 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

Table of contents

1 Scripting - review

2 Functions in shell

3 Scripting - Exercises

2 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

Plan

1 Scripting - review

2 Functions in shell

3 Scripting - Exercises

3 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

Bourne shell (sh)

sh - basics
This shell was developed by Stephen Bourne, of AT&T Bell
Laboratories, and was released in 1977 in the Version 7 Unix release
distributed to colleges and universities. It remains a popular default
shell for Unix accounts. The binary program of the Bourne shell or a
compatible program is located at /bin/sh on most Unix systems, and is
still the default shell for the root superuser on many current Unix
implementations. Its command interpreter contained all the features
that are commonly considered to produce structured programs.
Although it is used as an interactive command interpreter, it was
always intended as a scripting language.

4 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

sh features

Scripts can be invoked as commands by using their filename

May be used interactively or non-interactively

Allow both synchronous and asynchronous execution of commands

Supports input and output redirection and pipelines

Provides a set of builtin commands

Provides flow control constructs, quotation facilities, and functions.

Type-less variables

Provides local and global variable scope

Scripts do not require compilation before execution

Does not have a goto facility, so code restructuring may be
necessary

5 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

sh features cont.

Command substitution using back quotes: ‘command‘.

Here documents using << to embed a block of input text within a
script.

for - do - done loops, in particular the use of $* to loop over
arguments.

"case - in - esac" selection mechanism, primarily intended to
assist argument parsing.

sh provided support for environment variables using keyword
parameters and exportable variables.

It contains strong provisions for controlling input and output and
in its expression matching facilities.

6 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

bash - Bourne-again shell

bash - basics
Bash is a free software Unix shell written for the GNU Project. Its
name is an acronym which stands for Bourne-again shell. Bash was
created in 1987 by Brian Fox.
Bash is a POSIX shell with a number of extensions. It is the shell for
the GNU operating system from the GNU Project. It can be run on
most Unix-like operating systems. It is the default shell on most
systems built on top of the Linux kernel as well as on Mac OS X and
Darwin. It has also been ported to Microsoft Windows using Subsystem
for UNIX-based Applications (SUA), or POSIX emulation provided by
Cygwin and MSYS. It has been ported to MS-DOS by the DJGPP
project and to Novell NetWare.

7 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

bash - features

The Bash command syntax is a superset of the Bourne shell
command syntax.

The vast majority of Bourne shell scripts can be executed by Bash
without modification, with the exception of Bourne shell scripts
stumbling into fringe syntax behavior interpreted differently in
Bash

Bash command syntax includes ideas drawn from the Korn shell
(ksh) and the C shell (csh) such as

command line editing
command history
the directory stack
the $RANDOM and $PPID variables
POSIX command substitution syntax $()

When used as an interactive command shell and pressing the tab
key, Bash automatically uses command line completion to match
partly typed program names, filenames and variable names.

8 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

bash features cont.

can perform integer calculations without spawning external
processes

Bash uses the (()) command and the $(()) variable syntax for
this purpose.

Bash syntax simplifies I/O redirection (For example, Bash can
redirect standard output (stdout) and standard error (stderr) at
the same time using the &> operator)

Bash function declarations (using the key word ’function’) are not
compatible with Bourne/Korn/POSIX/C-shell scripts. Due to
these and other differences, Bash shell scripts are rarely runnable
under the Bourne or Korn shell interpreters unless deliberately
written with that compatibility in mind

Bash supports here documents just as the Bourne shell always has.
However, since version 2.05b Bash can redirect standard input
(stdin) from a ”here string” using the <<< operator.

Bash 3.0 supports in-process regular expression matching using a
syntax reminiscent of Perl.

9 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

Brace expansion

Def
Brace expansion is a feature, originating in csh, that allows arbitrary
strings to be generated using a similar technique to filename expansion.
However the generated names need not exist as files. The results of
each expanded string are not sorted and left to right order is preserved

bash-example

1 bash −3.00 $ echo a{p , c , d , b}e
2 ape ace ade abe

sh

1 r e d 303%echo a{p , c , d , b}e
2 a{p , c , d , b}e

10 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

More information

man pages (man sh, man bash ...)

sh documentation -
http://steve-parker.org/sh/bourne.shtml

bash home - http://www.gnu.org/software/bash/bash.html

comparison of different shells -
http://en.wikipedia.org/wiki/Comparison_of_command_shells

11 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

Plan

1 Scripting - review

2 Functions in shell

3 Scripting - Exercises

12 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

functions in shell

functions
The original version of the Bourne shell didn’t have functions. If you
wanted to perform an operation more than once, you either had to
duplicate the code, or create a new shell script. The Bourne shell
solved this problem with the concept of functions.

1 i n c A () {
2 # Inc rement A by 1
3 A=‘expr $A + 1 ‘
4 }
5 A=1
6 whi le [$A − l e 10]
7 do
8 echo $A
9 i n c A

10 done

13 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

Passing values by name

You can pass names of variables to functions. However, this adds a lot
of complexity. You must bypass the normal shell evaluation of variables.
Also, strings like "$$" have special meanings.

Increment a specified variable

1 #!/ cs / l o c a l / b i n / sh
2 i n c () { eva l $1=‘expr $$1 + 1 ‘ ; }

14 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

Exiting from a function

There are three ways of exiting a function

Normally, the function returns with the exit status of the last
command

If you want to control explicitly the value, the Bourne shell has a
special command called return that sets the status value to the
value specified.

If you execute an exit command inside a function it aborts the
script, and passes the value to the calling script

15 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

Arguments

How to check no of arguments?

Let’s say you have a shell script with three arguments. There are many
ways to solve this problem. One way to make sure your script will work
without the right number of arguments is to use default values for the
variables or you can use the form that reports an error if an argument is
missing.

16 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

Examples

Default

1 #!/ cs / l o c a l / b i n / sh
2 arg1=${1:−a . out }
3 arg2=${2:− ‘pwd ‘}
4 arg3=${3:−$HOME}
5 mv $arg2 / $arg1 $arg3

Request

1 #!/ cs / l o c a l / b i n / sh
2 f i l e t o b e m o v e d=”$1”
3 arg1=${ f i l e t o b e m o v e d : ? ” f i l e n a m e m i s s i n g ”}
4 arg2=${2:− ‘pwd ‘}
5 arg3=${3:−$HOME}
6 mv $arg2 / $arg1 $arg3

17 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

Examples

Request all

1 #!/ cs / l o c a l / b i n / sh
2 arg1=”a . out ”
3 arg2 =‘pwd ‘
4 arg3=$HOME
5 i f [$# −eq 3]
6 then
7 arg1=”$1” ;
8 arg2=”$2” ;
9 arg3=”$3” ;

10 e l s e
11 echo you must s p e c i f y e x a c t l y 3 arguments
12 ex i t 1
13 f i
14 echo $arg1 $arg2 $arg3
15 mv $arg2 / $arg1 $arg3

18 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

Optional arguments

1 #!/ cs / l o c a l / b i n / sh
2 usage () {
3 echo usage : ‘ basename $0 ‘ ’[−a] [−o f i l e] [f i l e . . .] ’ 1>&2
4 ex i t 1
5 }
6 a= o=
7 whi le :
8 do
9 case ”$1” i n

10 −a) a =1; ;
11 −o) s h i f t ; o=”$1” ; ;
12 −−) s h i f t ; break ; ;
13 −∗) usage ” bad argument $1” ; ;
14 ∗) break ; ;
15 e s a c
16 s h i f t
17 done

19 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

Plan

1 Scripting - review

2 Functions in shell

3 Scripting - Exercises

20 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

Example 1 - find a user in a CSV file

You’re suppose to find a user name, surname and id by name which is
passed as a script parameter.

21 / 22

CSE2031
Software

Tools - UNIX
scripting

Przemyslaw
Pawluk

Scripting -
review

Functions in
shell

Scripting -
Exercises

Example 2 - find all names of users that have
borrowed a book

You’re suppose to find all users’ names and surnames that have
borrowed a book. Book id is passed as a script parameter.

22 / 22

	Scripting - review
	Functions in shell
	Scripting - Exercises

