
CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

CSE2031 Software Tools - UNIX scripting

Summer 2010

Przemyslaw Pawluk

Department of Computer Science and Engineering
York University

Toronto

July 20, 2010

1 / 22

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

Table of contents

1 Scripting - review

2 Functions in shell

3 Scripting - Exercises

2 / 22

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

Bourne shell (sh)

sh - basics

This shell was developed by Stephen Bourne, of AT&T Bell
Laboratories, and was released in 1977 in the Version 7 Unix
release distributed to colleges and universities. It remains a
popular default shell for Unix accounts. The binary program of
the Bourne shell or a compatible program is located at /bin/sh
on most Unix systems, and is still the default shell for the root
superuser on many current Unix implementations. Its command
interpreter contained all the features that are commonly
considered to produce structured programs. Although it is used
as an interactive command interpreter, it was always intended as
a scripting language.

4 / 22

Notes

Notes

Notes

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

sh features

Scripts can be invoked as commands by using their filename

May be used interactively or non-interactively

Allow both synchronous and asynchronous execution of
commands

Supports input and output redirection and pipelines

Provides a set of builtin commands

Provides flow control constructs, quotation facilities, and
functions.

Type-less variables

Provides local and global variable scope

Scripts do not require compilation before execution

Does not have a goto facility, so code restructuring may be
necessary

5 / 22

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

sh features cont.

Command substitution using back quotes: ‘command‘.

Here documents using << to embed a block of input text
within a script.

for - do - done loops, in particular the use of $* to loop
over arguments.

"case - in - esac" selection mechanism, primarily
intended to assist argument parsing.

sh provided support for environment variables using keyword
parameters and exportable variables.

It contains strong provisions for controlling input and output
and in its expression matching facilities.

6 / 22

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

bash - Bourne-again shell

bash - basics

Bash is a free software Unix shell written for the GNU Project.
Its name is an acronym which stands for Bourne-again shell.
Bash was created in 1987 by Brian Fox.
Bash is a POSIX shell with a number of extensions. It is the shell
for the GNU operating system from the GNU Project. It can be
run on most Unix-like operating systems. It is the default shell on
most systems built on top of the Linux kernel as well as on Mac
OS X and Darwin. It has also been ported to Microsoft Windows
using Subsystem for UNIX-based Applications (SUA), or POSIX
emulation provided by Cygwin and MSYS. It has been ported to
MS-DOS by the DJGPP project and to Novell NetWare.

7 / 22

Notes

Notes

Notes

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

bash - features

The Bash command syntax is a superset of the Bourne shell
command syntax.

The vast majority of Bourne shell scripts can be executed by
Bash without modification, with the exception of Bourne
shell scripts stumbling into fringe syntax behavior
interpreted differently in Bash

Bash command syntax includes ideas drawn from the Korn
shell (ksh) and the C shell (csh) such as

command line editing
command history
the directory stack
the $RANDOM and $PPID variables
POSIX command substitution syntax $()

When used as an interactive command shell and pressing the
tab key, Bash automatically uses command line completion
to match partly typed program names, filenames and
variable names.8 / 22

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

bash features cont.

can perform integer calculations without spawning external
processes

Bash uses the (()) command and the $(()) variable syntax
for this purpose.

Bash syntax simplifies I/O redirection (For example, Bash
can redirect standard output (stdout) and standard error
(stderr) at the same time using the &> operator)

Bash function declarations (using the key word ’function’)
are not compatible with Bourne/Korn/POSIX/C-shell
scripts. Due to these and other differences, Bash shell
scripts are rarely runnable under the Bourne or Korn shell
interpreters unless deliberately written with that
compatibility in mind

Bash supports here documents just as the Bourne shell
always has. However, since version 2.05b Bash can redirect
standard input (stdin) from a ”here string” using the <<<

operator.

Bash 3.0 supports in-process regular expression matching
using a syntax reminiscent of Perl.

9 / 22

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

Brace expansion

Def

Brace expansion is a feature, originating in csh, that allows
arbitrary strings to be generated using a similar technique to
filename expansion. However the generated names need not exist
as files. The results of each expanded string are not sorted and
left to right order is preserved

bash-example

1 bash −3.00 $ echo a{p , c , d , b}e
2 ape ace ade abe

sh

1 r e d 303%echo a{p , c , d , b}e
2 a{p , c , d , b}e

10 / 22

Notes

Notes

Notes

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

More information

man pages (man sh, man bash ...)

sh documentation -
http://steve-parker.org/sh/bourne.shtml

bash home -
http://www.gnu.org/software/bash/bash.html

comparison of different shells -
http://en.wikipedia.org/wiki/Comparison_of_command_shells

11 / 22

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

functions in shell

functions

The original version of the Bourne shell didn’t have functions. If
you wanted to perform an operation more than once, you either
had to duplicate the code, or create a new shell script. The
Bourne shell solved this problem with the concept of functions.

1 i n c A () {
2 # Inc rement A by 1
3 A=‘expr $A + 1 ‘
4 }
5 A=1
6 whi le [$A − l e 10]
7 do
8 echo $A
9 i n c A

10 done
13 / 22

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

Passing values by name

You can pass names of variables to functions. However, this adds
a lot of complexity. You must bypass the normal shell evaluation
of variables. Also, strings like "$$" have special meanings.

Increment a specified variable

1 #!/ cs / l o c a l / b i n / sh
2 i n c () { eva l $1=‘expr $$1 + 1 ‘ ; }

14 / 22

Notes

Notes

Notes

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

Exiting from a function

There are three ways of exiting a function

Normally, the function returns with the exit status of the
last command

If you want to control explicitly the value, the Bourne shell
has a special command called return that sets the status
value to the value specified.

If you execute an exit command inside a function it aborts
the script, and passes the value to the calling script

15 / 22

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

Arguments

How to check no of arguments?

Let’s say you have a shell script with three arguments. There are
many ways to solve this problem. One way to make sure your
script will work without the right number of arguments is to use
default values for the variables or you can use the form that
reports an error if an argument is missing.

16 / 22

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

Examples

Default

1 #!/ cs / l o c a l / b i n / sh
2 arg1=${1:−a . out }
3 arg2=${2:− ‘pwd ‘}
4 arg3=${3:−$HOME}
5 mv $arg2 / $arg1 $arg3

Request

1 #!/ cs / l o c a l / b i n / sh
2 f i l e t o b e m o v e d=”$1”
3 arg1=${ f i l e t o b e m o v e d : ? ” f i l e n a m e m i s s i n g ”}
4 arg2=${2:− ‘pwd ‘}
5 arg3=${3:−$HOME}
6 mv $arg2 / $arg1 $arg3

17 / 22

Notes

Notes

Notes

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

Examples

Request all

1 #!/ cs / l o c a l / b i n / sh
2 arg1=”a . out ”
3 arg2 =‘pwd ‘
4 arg3=$HOME
5 i f [$# −eq 3]
6 then
7 arg1=”$1” ;
8 arg2=”$2” ;
9 arg3=”$3” ;

10 e l s e
11 echo you must s p e c i f y e x a c t l y 3 arguments
12 ex i t 1
13 f i
14 echo $arg1 $arg2 $arg3
15 mv $arg2 / $arg1 $arg3

18 / 22

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

Optional arguments

1 #!/ cs / l o c a l / b i n / sh
2 usage () {
3 echo usage : ‘ basename $0 ‘ ’[−a] [−o f i l e] [f i l e . . .] ’ 1>&2
4 ex i t 1
5 }
6 a= o=
7 whi le :
8 do
9 case ”$1” i n

10 −a) a =1; ;
11 −o) s h i f t ; o=”$1” ; ;
12 −−) s h i f t ; break ; ;
13 −∗) usage ” bad argument $1” ; ;
14 ∗) break ; ;
15 e s a c
16 s h i f t
17 done

19 / 22

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

Example 1 - find a user in a CSV file

You’re suppose to find a user name, surname and id by name
which is passed as a script parameter.

21 / 22

Notes

Notes

Notes

CSE2031
Software
Tools -
UNIX

scripting

Przemyslaw
Pawluk

Scripting -
review

Functions
in shell

Scripting -
Exercises

Example 2 - find all names of users that have
borrowed a book

You’re suppose to find all users’ names and surnames that have
borrowed a book. Book id is passed as a script parameter.

22 / 22

Notes

Notes

Notes

	Scripting - review
	Functions in shell
	Scripting - Exercises

