
Some examples and/or figures were borrowed (with permission)
from slides prepared by Prof. H. Roumani

Java By Abstraction: Chapter Java By Abstraction: Chapter 1010

The Collection FrameworkThe Collection Framework

2CSE1020 S10 (Steven C.)

ReviewReview

•• Collection: an aggregate that can hold a varying Collection: an aggregate that can hold a varying
number of elementsnumber of elements

•• Interface: an entity that defines mandatory Interface: an entity that defines mandatory
features (methods, attributes, etc.) of all classes features (methods, attributes, etc.) of all classes
that implement itthat implement it

3CSE1020 S10 (Steven C.)

add(element)
remove(element)
iterator()
...

Set

add(key, value)
remove(key)
get(key)
keySet(): Set

Map

add(element)
remove(element)
get(index)
iterator()

List

Sequence Set Pairs

Duplicates are OK
and the positional
order is significant

A pair is
(key,value) where

key is unique

Duplicates are not
allowed and order
is insignificant

The InterfacesThe Interfaces

4CSE1020 S10 (Steven C.)

add(element)
remove(element)
iterator()
...

Set

add(key, value)
remove(key)
get(key)
keySet(): Set

Map

add(element)
remove(element)
get(index)
iterator()

List

ArrayList
LinkedList

HashSet
TreeSet

HashMap
TreeMap

The two classes that implement each interface are
equivalent in the client’s view. The only visible diff
is performance (running time).

The ClassesThe Classes

5CSE1020 S10 (Steven C.)

Which Class to Use?Which Class to Use?

•• ArrayListArrayList: good if you want elements to be indexed: good if you want elements to be indexed
•• LinkedListLinkedList: only efficient if elements added to the : only efficient if elements added to the

beginning of the listbeginning of the list
•• TreeSetTreeSet or or TreeMapTreeMap: good if you want to access : good if you want to access

elements in sorted orderelements in sorted order
•• HashSetHashSet or or HashMapHashMap: more efficient than : more efficient than

TreeSetTreeSet/Map if you don/Map if you don’’t need sorted ordert need sorted order

6CSE1020 S10 (Steven C.)

GenericsGenerics

•• Java is strongly typedJava is strongly typed
•• Object type mismatch checked at compileObject type mismatch checked at compile--timetime

•• Collections prior to Java 1.5:Collections prior to Java 1.5:
•• Create for elements of a specific typeCreate for elements of a specific type
•• Create to contain elements of type Object, then castCreate to contain elements of type Object, then cast

•• Java 1.5 introduced generics:Java 1.5 introduced generics:
•• Specify element type in angled bracketsSpecify element type in angled brackets

e.g.: <String>e.g.: <String>

7CSE1020 S10 (Steven C.)

Generics in the APIGenerics in the API

•• Generics allows the element type to be defined Generics allows the element type to be defined
at compilationat compilation

•• API needs a placeholder to describe parameter API needs a placeholder to describe parameter
types and/or return typestypes and/or return types

•• Placeholder names are arbitraryPlaceholder names are arbitrary
•• Typical placeholders: T, E, K, V, P, CTypical placeholders: T, E, K, V, P, C
•• Example: Example: add(intadd(int index, E element)index, E element)

8CSE1020 S10 (Steven C.)

Declaring and Initializing CollectionsDeclaring and Initializing Collections

•• Declare reference using the interface, but Declare reference using the interface, but
initialize object using the classinitialize object using the class

List<String> bag = new ArrayList<String>();

9CSE1020 S10 (Steven C.)

Using Collections without GenericsUsing Collections without Generics

•• DonDon’’t do itt do it
•• Generics allows for type checking at compileGenerics allows for type checking at compile--timetime
•• With generics:With generics:

•• List<String> bag = new List<String> bag = new ArrayListArrayList<String>();<String>();

•• Without generics:Without generics:
•• List bag = new List bag = new ArrayListArrayList();();

•• Compiler warning without generics:Compiler warning without generics:
•• Note: Note: ClassNameClassName.java.java uses unchecked or unsafe operations.uses unchecked or unsafe operations.

Note: Recompile with Note: Recompile with --Xlint:uncheckedXlint:unchecked for details.for details.

10CSE1020 S10 (Steven C.)

• Use add to add elements to lists and sets:

List<Date> list = new ArrayList<Date>();
Set<String> set = new HashSet<String>();
list.add(new Date());
set.add("Hello");

Map<Integer, String> map;
map = new HashMap<Integer, String>();
map.put(55, "Clock Rate");

• Use put to add an element to a map

API Highlights (1)API Highlights (1)

11CSE1020 S10 (Steven C.)

• Use remove to delete from lists and sets:
boolean done = set.remove("Adam");

String gone = map.remove(55);

• To delete a map element given its key:

Note that remove returns false if the specified
element was not found and returns true otherwise.

Note that remove in maps returns the value of the
element that was removed or null if the specified
key was not found.

API Highlights (2)API Highlights (2)

12CSE1020 S10 (Steven C.)

• To insert x at position 5:
list.add(5, x);

list.remove(5);

• To delete the element at position 5:

The elements of lists are indexed (starting from 0).
Hence, but only for lists, we can also add and delete
based on the position index:

This will work only if the list has at least 5 elements, and it
will adjust the indices of all elements after position 5, if any.

This will work only if the list has at least 6 elements.

API Highlights (3)API Highlights (3)

13CSE1020 S10 (Steven C.)

•The element at position 3 in a list:
Date d = list.get(3);

The elements of lists and maps (but not sets) can be
retrieved using get:

•The value of the element with key 55 in a map:
String s = map.get(55);

Note:
All interfaces come with size(), equals(), toString(),
and contains (containsKey in maps).

API Highlights (4)API Highlights (4)

14CSE1020 S10 (Steven C.)

 ... e0 en-1e1

• Lists and Sets aggregate an iterator

• Use iterator() to get it

• It starts positioned before the 1st element

• Use next() and hasNext() to control the cursor

The The IteratorIterator

15CSE1020 S10 (Steven C.)

To benefit from this, let us rewrite the loop of the
previous slide so it prints the elements capitalized:

Iterator<String> it = set.iterator();
for (; it.hasNext();)
{
String tmp = it.next();
output.println(tmp.toUpperCase());

}

Iterator<String> it = set.iterator();

The Iterator class supports generics; i.e. we
can obtain a type-aware iterator as follows:

The The IteratorIterator and Genericsand Generics

16CSE1020 S10 (Steven C.)

Iterator<Integer> it = map.keySet().iterator();
for (; it.hasNext();)
{

int key = it.next();
String value = map.get(key);
output.println(key + " --> " + value);

}

public Set<K> keySet()

The Map interface has no iterator() method but
we can obtain a set of the map’s keys:

And by iterating over the obtained set, we can,
in effect, iterate over the map’s elements:

Iterating over a MapIterating over a Map

17CSE1020 S10 (Steven C.)

The Collections class has the method:

static void sort(List<T> list)

It rearranges the elements of the list in a
non-descending order. It works if, and only
if, the elements are comparable; i.e. one
can invoke the compareTo method on any of
them passing any element as a parameter.

Recall that compareTo (in String) returns an
int whose sign indicates < or > and whose 0
value signals equality.

Sorting CollectionsSorting Collections

18CSE1020 S10 (Steven C.)

Note:
Requiring that T implements Comparable<T> is too
strong. It is sufficient if T extends some class S
that implements Comparable<S>. The sort method
states this requirement in its API as follows:

To ensure that compareTo can be invoked,
we require that T (the element's class)
implements Comparable<T>, an interface
with only one method: compareTo(T).

<T extends Comparable<? super T>>

Implementing ComparableImplementing Comparable

19CSE1020 S10 (Steven C.)

Write a program that creates a list of a
few Fractions and then sort them.

List<Fraction> list;
list = new ArrayList<Fraction>();
list.add(new Fraction(1,2));
list.add(new Fraction(3,4));
list.add(new Fraction(1,3));

output.println(list);
Collections.sort(list);
output.println(list);

Sorting a List CollectionSorting a List Collection

20CSE1020 S10 (Steven C.)

The sort method accepts only lists. What if
we needed to sort a set?

Set<Fraction> set;
set = new HashSet<Fraction>();
set.add(new Fraction(1,2));
set.add(new Fraction(3,4));
set.add(new Fraction(1,3));
output.println(set);

A minor modification to the above program
will make its output sorted …

Sorting nonSorting non--List CollectionsList Collections

21CSE1020 S10 (Steven C.)

Simply use TreeSet instead of HashSet.

The same technique applies to maps: use
TreeMap instead of HashMap to keep the
map's elements sorted on their keys.

Note:
Using a tree-implementing class for sets and maps is
conceptually different from using the sort methods
for lists. The former keeps the elements sorted at
all times. The latter sort will not persist after add-
ing or removing elements.

Sorting nonSorting non--List CollectionsList Collections

22CSE1020 S10 (Steven C.)

The main advantage of sorting is speeding
up the search. When the elements are
sorted, you don't have to visit all of them
to determine if a given value is present in
the collection or not.

The method searches for value in list and returns
its index if found and a negative number otherwise

int binarySearch(List list, T value)

Note: Unlike exhaustive search (which is linear), binary search
has a complexity of O(lgN).

Binary SearchBinary Search

23CSE1020 S10 (Steven C.)

ApplicationsApplications

•• Read, study, and work through the application Read, study, and work through the application
exercises in section 10.3exercises in section 10.3

