
Some examples and/or figures were borrowed (with permission)
from slides prepared by Prof. H. Roumani

Java By Abstraction: Chapter 4Java By Abstraction: Chapter 4

Using ObjectsUsing Objects

2CSE1020 S10 (Steven C.)

What is an ObjectWhat is an Object

•• An object has: attributes, methods, an identity, and a stateAn object has: attributes, methods, an identity, and a state
•• A class has: attributes and methodsA class has: attributes and methods
•• Objects with the same attributes and methods can be Objects with the same attributes and methods can be

replaced with a class that abstracts them:replaced with a class that abstracts them:

A
bstract

Instantiate

3CSE1020 S10 (Steven C.)

Objects vs. PrimitivesObjects vs. Primitives

•• PrimitivesPrimitives
•• Contains a single valueContains a single value

•• ObjectsObjects
•• Can contain numerous attributesCan contain numerous attributes
•• Each attribute has its own valueEach attribute has its own value
•• Attributes can represent primitives or other objectsAttributes can represent primitives or other objects

4CSE1020 S10 (Steven C.)

Object ReferenceObject Reference

•• Variables of nonVariables of non--primitive types are called primitive types are called
referencesreferences

•• References hold the memory address of an References hold the memory address of an
object, but not the object itselfobject, but not the object itself

•• Because it is a variable, a references can be Because it is a variable, a references can be
changed to point to a different object in memorychanged to point to a different object in memory

•• However, the memory address cannot be directly However, the memory address cannot be directly
manipulatedmanipulated

5CSE1020 S10 (Steven C.)

Object ConstructorObject Constructor

•• Use the keyword Use the keyword newnew to instantiate an object to instantiate an object
(i.e., reserve memory for it)(i.e., reserve memory for it)

•• Invoke the classInvoke the class’’s s constructorconstructor to initialize the to initialize the
objectobject’’s state (i.e., the value of its attributes)s state (i.e., the value of its attributes)

•• Constructors look like methods, butConstructors look like methods, but……
•• Have no return type (not even void)Have no return type (not even void)
•• Have the same name as their classHave the same name as their class

•• Multiple constructors could exist for a single Multiple constructors could exist for a single
class, providing differing initializationsclass, providing differing initializations

6CSE1020 S10 (Steven C.)

Object Creation in MemoryObject Creation in Memory

1.1. Locate the classLocate the class

7CSE1020 S10 (Steven C.)

Object Creation in MemoryObject Creation in Memory

2.2. Declare a referenceDeclare a reference

+f : Fraction
Main Class

+numerator : long
+denominator : long

Fraction Class

8CSE1020 S10 (Steven C.)

Object Creation in MemoryObject Creation in Memory

3.3. Instantiate the classInstantiate the class

+f : Fraction
Main Class

+numerator : long
+denominator : long

Fraction Class

numerator : long = 3
denominator : long = 5

Object : Fraction

9CSE1020 S10 (Steven C.)

Object Creation in MemoryObject Creation in Memory

4.4. Assign a referenceAssign a reference

+f : Fraction
Main Class

+numerator : long
+denominator : long

Fraction Class

numerator : long = 3
denominator : long = 5

Object : Fraction

10CSE1020 S10 (Steven C.)

Using Objects (Example)Using Objects (Example)

……
intint width = 8;width = 8;
intint height = 5;height = 5;
Rectangle3 r = new Rectangle3();Rectangle3 r = new Rectangle3();
r.widthr.width = width;= width;
r.heightr.height = height;= height;
intint rArearArea = = r.getArear.getArea();();
System.out.println(rAreaSystem.out.println(rArea););
……

11CSE1020 S10 (Steven C.)

Multiple References to an ObjectMultiple References to an Object

•• A reference can only point to one object at a timeA reference can only point to one object at a time
•• Multiple references can point to the same objectMultiple references can point to the same object
•• ExampleExample

Fraction f1;Fraction f1;
f1 = new Fraction(3, 5);f1 = new Fraction(3, 5);
Fraction f2;Fraction f2;
f2 = f1; // both point to the same objectf2 = f1; // both point to the same object

•• State changes via one reference affects the objectState changes via one reference affects the object
•• Object changes are visible via any reference to itObject changes are visible via any reference to it

12CSE1020 S10 (Steven C.)

Multiple References to an ObjectMultiple References to an Object

13CSE1020 S10 (Steven C.)

Object EqualityObject Equality

•• Comparison using == operator only check Comparison using == operator only check
memory address, not object statememory address, not object state

•• Comparison of object state requires use of the Comparison of object state requires use of the
equals() methodequals() method

•• ExampleExample
•• objRef1objRef1.equals(.equals(objRef2objRef2););

•• Definition of object equality defined by class Definition of object equality defined by class
implementer (in API)implementer (in API)

14CSE1020 S10 (Steven C.)

Object EqualityObject Equality

15CSE1020 S10 (Steven C.)

Obligatory MethodsObligatory Methods

•• The equals() methodThe equals() method
•• Determines equalityDetermines equality
•• Default: compare memory addressDefault: compare memory address

•• The The toStringtoString() method() method
•• Returns textual representation of the objectReturns textual representation of the object
•• Default: object type, followed by memory addressDefault: object type, followed by memory address
•• Implicitly called by print methodsImplicitly called by print methods

•• Default behaviour are typically overridden by Default behaviour are typically overridden by
the class implementerthe class implementer

16CSE1020 S10 (Steven C.)

AccessorAccessor and and MutatorMutator MethodsMethods

•• AccessorAccessor methodsmethods
•• Allow clients to determine an objectAllow clients to determine an object’’s states state
•• Names typically begin with Names typically begin with ““getget””
•• E.g., E.g., getNumeratorgetNumerator(), (), getDenominatorgetDenominator()()

•• MutatorMutator methodsmethods
•• Allow clients to change an objectAllow clients to change an object’’s states state
•• Names typically begin with Names typically begin with ““setset””
•• E.g., E.g., setFraction(longsetFraction(long numerator, long denominator)numerator, long denominator)

17CSE1020 S10 (Steven C.)

Attribute PrivacyAttribute Privacy

•• Facilitated by using Facilitated by using accessoraccessor and and mutatormutator methodsmethods
•• Enhances encapsulationEnhances encapsulation
•• Provides means to check and enforce preProvides means to check and enforce pre--conditions and postconditions and post--

conditionsconditions

•• Use of Use of accessoraccessor and and mutatormutator
•• Read/write access with contractsRead/write access with contracts

•• Use of a Use of a accessoraccessor onlyonly
•• Read only access with contractsRead only access with contracts

•• Use of a Use of a mutatormutator onlyonly
•• Write only access with contractsWrite only access with contracts

18CSE1020 S10 (Steven C.)

Classes with Static FeaturesClasses with Static Features

•• Stored in the classStored in the class’’s memory region, not objects memory region, not object’’ss
•• Changes in value affect all objects of that classChanges in value affect all objects of that class
•• Example: Example:

•• Because Because isQuotedisQuoted is static, setting it to false affects both objectsis static, setting it to false affects both objects
Fraction f = new Fraction(3, 2);Fraction f = new Fraction(3, 2);
f.isQuotedf.isQuoted = true;= true;
Fraction g = new Fraction(5, 2);Fraction g = new Fraction(5, 2);
g.isQuotedg.isQuoted = false;= false;
System.out.println(f.toProperStringSystem.out.println(f.toProperString());());
System.out.println(g.toProperStringSystem.out.println(g.toProperString());());

•• Should be invoked on the class, not the objectShould be invoked on the class, not the object

19CSE1020 S10 (Steven C.)

Object Deletion (Object Deletion (……sort of)sort of)

•• In Java, the programmer cannot remove an object from In Java, the programmer cannot remove an object from
memorymemory

•• Can orphan an object by removing referent to itCan orphan an object by removing referent to it
•• ExampleExample

Fraction x = new Fraction(3, 5);Fraction x = new Fraction(3, 5);
Fraction y = x;Fraction y = x;
y = new Fraction(4, 7);y = new Fraction(4, 7);
x = null; x = null;

•• Orphaned objects are cleared via garbage collectionOrphaned objects are cleared via garbage collection

