
Some examples and/or figures were borrowed (with permission)
from slides prepared by Prof. H. Roumani

Java By Abstraction: Chapter 2Java By Abstraction: Chapter 2

Programming by DelegationProgramming by Delegation

2CSE1020 S10 (Steven C.)

Object Oriented Programming (OOP)Object Oriented Programming (OOP)

•• Encapsulate realEncapsulate real--world entities in a world entities in a classclass
•• Class usually represents a Class usually represents a nounnoun (i.e., a thing)(i.e., a thing)
•• OneOne--word class names begin with a capital letterword class names begin with a capital letter

•• E.g., First, Rectangle3, Check01E.g., First, Rectangle3, Check01

•• MultiMulti--word names begin each word with capitalword names begin each word with capital
•• E.g., E.g., FirstAppFirstApp, , PrintStreamPrintStream

•• Instances of a class are called Instances of a class are called objectsobjects

3CSE1020 S10 (Steven C.)

Object Oriented Programming (OOP)Object Oriented Programming (OOP)

•• Characteristics are represented as Characteristics are represented as attributesattributes
•• Attribute also usually represents a Attribute also usually represents a nounnoun

•• OneOne--word attribute name all in lowercaseword attribute name all in lowercase
•• E.g., width, heightE.g., width, height

•• MultiMulti--word names begin second and subsequent word names begin second and subsequent
words with capitalwords with capital

•• E.g., E.g., countPositivecountPositive, , cardNumbercardNumber

•• Constant attribute name all in UPPER_CASE with Constant attribute name all in UPPER_CASE with
words separated with an underscorewords separated with an underscore

4CSE1020 S10 (Steven C.)

Object Oriented Programming (OOP)Object Oriented Programming (OOP)

•• Operations are represented as Operations are represented as methodsmethods
•• Method usually represents a Method usually represents a verbverb (i.e., an action)(i.e., an action)
•• Always followed by Always followed by parenthesesparentheses (even if empty)(even if empty)
•• Additional data (called Additional data (called parametersparameters) included in) included in

parentheses if necessaryparentheses if necessary
•• OneOne--word method name all in lowercaseword method name all in lowercase

•• E.g., E.g., equals(equals(anotherObjectanotherObject), round()), round()

•• MultiMulti--word names begin second and subsequent word names begin second and subsequent
words with capitalwords with capital

•• E.g., E.g., scale(scale(xx, y, w, h, y, w, h),), getAreagetArea()()

5CSE1020 S10 (Steven C.)

Accessing AttributesAccessing Attributes

•• Assume Assume rr represents a Rectangle3 objectrepresents a Rectangle3 object
•• Attributes of type Attributes of type intint: : widthwidth, , heightheight

•• Attribute access syntaxAttribute access syntax
•• objectIdentifier.attributeNameobjectIdentifier.attributeName

•• ExamplesExamples
•• intint currentWidthcurrentWidth = = r.widthr.width;;
•• intint newWidthnewWidth = 8;= 8;

r.widthr.width = = newWidthnewWidth ;;

6CSE1020 S10 (Steven C.)

Invoking a MethodInvoking a Method

•• Assume r represents a Rectangle3 Assume r represents a Rectangle3 objectobject

•• Method Method getAreagetArea()() returns area as returns area as intint

•• Method Method invokationinvokation syntaxsyntax
•• objectIdentifier.methodName(parametersobjectIdentifier.methodName(parameters))

•• ExamplesExamples
•• intint area = area = r.getArear.getArea()();;

7CSE1020 S10 (Steven C.)

Instantiating ObjectsInstantiating Objects

•• Use the keyword Use the keyword newnew to instantiate (i.e., create) to instantiate (i.e., create)
an objectan object

•• Invoke the classInvoke the class’’s s constructorconstructor method to method to
initialize the objectinitialize the object’’s states state

•• Object declaration and instantiation syntaxObject declaration and instantiation syntax
•• ClassNameClassName identifieridentifier = = newnew ClassNameClassName();();

•• ExampleExample
•• Rectangle3 r = Rectangle3 r = newnew Rectangle3();Rectangle3();

8CSE1020 S10 (Steven C.)

Using Objects (Example)Using Objects (Example)

……
intint width = 8;width = 8;
intint height = 5;height = 5;
Rectangle3 r = new Rectangle3();Rectangle3 r = new Rectangle3();
r.widthr.width = width;= width;
r.heightr.height = height;= height;
intint rArearArea = = r.getArear.getArea();();
System.out.println(rAreaSystem.out.println(rArea););
……

9CSE1020 S10 (Steven C.)

Utility ClassesUtility Classes

•• Uses Procedural ParadigmUses Procedural Paradigm
•• Performs computation, not data storagePerforms computation, not data storage

•• Represent computations, not objectsRepresent computations, not objects
•• E.g., Math classE.g., Math class
•• All methods and attributes are All methods and attributes are staticstatic

•• Can be called without first declaring an objectCan be called without first declaring an object
•• E.g., E.g., Math.PIMath.PI, , Math.EMath.E, , Math.roundMath.round(), (), Math.logMath.log()()

•• NonNon--utility classes may also have some static utility classes may also have some static
methods and/or attributesmethods and/or attributes

10CSE1020 S10 (Steven C.)

Main ClassesMain Classes

•• Can be run from the commandCan be run from the command--lineline
•• Starting point for a Java applicationStarting point for a Java application
•• Coordinates use of helper classesCoordinates use of helper classes

(i.e., components)(i.e., components)

11CSE1020 S10 (Steven C.)

Delegation by AbstractionDelegation by Abstraction

•• Determine what needs to be doneDetermine what needs to be done
•• Which helper class can accomplish each taskWhich helper class can accomplish each task
•• Abstract the details of how each is accomplishedAbstract the details of how each is accomplished
•• Bread analogy in text (p. 56)Bread analogy in text (p. 56)

•• Difficult to grow, harvest, and mill wheat, to bake Difficult to grow, harvest, and mill wheat, to bake
into breadinto bread

•• Instead, coordinate with a farmer, miller, and bakerInstead, coordinate with a farmer, miller, and baker

12CSE1020 S10 (Steven C.)

The Client ViewThe Client View

• The client develops the main class
• Understands the big picture, the purpose of the

application
• Knows what each component does but not how it

does it
• The implementer develops a component

• Focuses only on the inner details of one component
• Client and Implementer share info on a

need-to-know basis

13CSE1020 S10 (Steven C.)

The Client ViewThe Client View

CLIENT

Interface
Interface In

te
rf

ac
e

IMPLEMENTER

Interface

14CSE1020 S10 (Steven C.)

Access ModifiersAccess Modifiers

•• Hide implementation details from clientsHide implementation details from clients
•• Apply to classes, methods, and/or attributesApply to classes, methods, and/or attributes

•• Features with Features with publicpublic access appear in the API and are access appear in the API and are
accessible to clientsaccessible to clients

•• Features with Features with privateprivate access are not in the API and are access are not in the API and are notnot
accessible to clientsaccessible to clients

•• Features with protected access are in the API, but are Features with protected access are in the API, but are
accessible only to other implementersaccessible only to other implementers

•• Features with no specified access are not in the API and are Features with no specified access are not in the API and are
available only classes in the same package (i.e., directory)available only classes in the same package (i.e., directory)

15CSE1020 S10 (Steven C.)

ContractsContracts

•• Guarantee between client and implementerGuarantee between client and implementer
•• PreconditionPrecondition

•• What the client must satisfyWhat the client must satisfy
•• PostconditionPostcondition

•• What the implementer must deliverWhat the implementer must deliver
•• LiabilityLiability

•• Pre. is satisfied and post. is satisfied Pre. is satisfied and post. is satisfied  GoodGood
•• Pre. is satisfied and post. is not satisfied Pre. is satisfied and post. is not satisfied  Implementer at faultImplementer at fault
•• Pre. is not satisfied Pre. is not satisfied  Client at faultClient at fault
•• If no precondition stated, then client need not satisfy anythingIf no precondition stated, then client need not satisfy anything

16CSE1020 S10 (Steven C.)

Contracts in JavaContracts in Java

•• Methods in the Java specify contracts as follows:Methods in the Java specify contracts as follows:
•• Precondition is always true unless stated otherwisePrecondition is always true unless stated otherwise
•• PostconditionPostcondition is specified under Returns and Throwsis specified under Returns and Throws

•• Example:Example:

double squareRoot(double x)
Returns the square root of the given argument.

Parameters:

x - an argument.
Returns:

the positive square root of x.
Throws:

an exception if x < 0.

17CSE1020 S10 (Steven C.)

TYPE and Java Standard LibraryTYPE and Java Standard Library

•• Contains over 3000 Contains over 3000
componentscomponents

•• Class details contained in Class details contained in
TYPE API and Java APITYPE API and Java API

•• Organized into packages Organized into packages
and and subpackagessubpackages

•• ExamplesExamples
•• type.lib.Rectangle3type.lib.Rectangle3
•• java.util.Scannerjava.util.Scanner

java.awt Provides support for drawing graphics.
AWT = Abstract Windowing Toolkit

java.beans Provide support for Java Beans.
java.io Provides support for file and other I/O operations.

java.lang Provides the fundamental Java classes.
This package is auto-imported by the compiler.

java.math Provides support for arbitrary-precision arithmetic
java.net Provides support for network access.

java.rmi Provides support for RMI.
RMI = Remote Method Invocation

java.security Provides support for the security framework.

java.sql
Provides support for databases access over JDBC
JDBC = Java Database Connectivity,
SQL = Structured Query Language

java.text Provides formatting for text, dates, and numbers.

java.util Miscellaneous utility classes including JCF.
JCF = Java Collection Framework

javax.crypto Provides support for cryptographic operations.

javax.servlet Provides support for servlet and JSP development.
JSP = Java Server Pages

javax.swing Provides support for GUI development.
GUI = Graphical User Interface

javax.xml Provides support for XML processing.
XML = eXtensible Markup Language

18CSE1020 S10 (Steven C.)

Importing Packages and ClassesImporting Packages and Classes

•• Indicate use of Java Standard Library (other than Indicate use of Java Standard Library (other than
java.langjava.lang.*) or other Java library (e.g., TYPE).*) or other Java library (e.g., TYPE)

•• Import one or all classes in a Import one or all classes in a subpackagesubpackage (using *)(using *)
•• Import statement syntaxImport statement syntax

•• importimport package.subpackage.classpackage.subpackage.class; // imports a single class; // imports a single class
•• importimport package.subpackagepackage.subpackage..*; // imports all classes in *; // imports all classes in subpackagesubpackage

•• ExampleExample
•• importimport java.util.Scannerjava.util.Scanner; // imports only the Scanner class; // imports only the Scanner class
•• importimport type.libtype.lib.*; // imports all classes in the lib .*; // imports all classes in the lib subpackagesubpackage

19CSE1020 S10 (Steven C.)

ReadyReady--Made Input and OutputMade Input and Output

•• import import java.util.Scannerjava.util.Scanner; // place at top of file; // place at top of file
•• Captures user input from the terminalCaptures user input from the terminal
•• Parses lines, words, and primitive data typesParses lines, words, and primitive data types

•• import import java.io.PrintStreamjava.io.PrintStream; // place at top of file; // place at top of file
•• Outputs text to the terminalOutputs text to the terminal
•• Formats outputFormats output

•• Field widthField width
•• Specify number of decimal placesSpecify number of decimal places

20CSE1020 S10 (Steven C.)

Parsing InputParsing Input

•• Scanner input = new Scanner input = new Scanner(System.inScanner(System.in););
•• Tokenizes input (i.e., separates using whitespace)Tokenizes input (i.e., separates using whitespace)

•• nextIntnextInt()()
•• Parses next token as Parses next token as intint

•• nextDoublenextDouble()()
•• Parses next token as doubleParses next token as double

•• nextLongnextLong()()
•• nextFloatnextFloat()()

•• next()next()
•• Returns the next wordReturns the next word

•• nextLinenextLine()()
•• Returns the next lineReturns the next line

•• nextBooleannextBoolean()()
•• nextCharnextChar()()

21CSE1020 S10 (Steven C.)

Formatting OutputFormatting Output

•• PrintStreamPrintStream output = new output = new PrintStream(System.outPrintStream(System.out););

•• print(print(variablevariable) or) or print(print(““stringstring literalliteral””))
•• Outputs text to the terminalOutputs text to the terminal

•• println(println(variablevariable) or) or println(println(““stringstring literalliteral””))
•• Outputs text to the terminal and appends a newline Outputs text to the terminal and appends a newline

charactercharacter

•• printf(printf(““formatformat stringstring””, , variable...variable...))
•• Outputs formatted text to the terminalOutputs formatted text to the terminal

22CSE1020 S10 (Steven C.)

Formatting OutputFormatting Output

•• Format string syntax (see p. 111)Format string syntax (see p. 111)
• %[flags][width][.precision]conversion
• flag: , or 0
• width: field width (text: left aligned; digits: right aligned)
• precision: number of decimals
• conversion: d (integer), f (real), s (text), or n (newline)

•• Can also include nonCan also include non--format textformat text
•• ExampleExample

•• double x = 15.753;double x = 15.753;
output.printf(output.printf(““CostCost: %.2f: %.2f””, x); // outputs Cost: 15.75, x); // outputs Cost: 15.75

23CSE1020 S10 (Steven C.)

Program TemplateProgram Template

•• See page 70See page 70

•• Template for all of your 1020 Java programsTemplate for all of your 1020 Java programs

•• Memorize itMemorize it

24CSE1020 S10 (Steven C.)

Java Quick Reference GuideJava Quick Reference Guide

www.cse.yorku.ca/course/1020/docs/Java_QuickRef.pdfwww.cse.yorku.ca/course/1020/docs/Java_QuickRef.pdf

