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Abstract

In this paper, we describe the Optimized Link State Routing
Protocol (OLSR) [1] for Mobile Ad-hoc NETworks (MANETs)
and the evaluation of this protocol through experiments and
simulations. In particular, we emphasize the practical tests and
intensive simulations, which have been used in guiding and
evaluating the design of the protocol, and which have been a
key to identifying both problems and solutions.

OLSR is a proactive link-state routing protocol, employing
periodic message exchange for updating topological informa-
tion in each node in the network. I.e. topological information is
flooded to all nodes in the network.

Conceptually, OLSR contains three elements: Mechanisms
for neighbor sensing based on periodic exchange of HELLO
messages within a node’s neighborhood. Generic mechanisms
for efficient flooding of control traffic into the network employ-
ing the concept ofmultipoint relays(MPRs) [5] for a significant
reduction of duplicate retransmissions during the floodingpro-
cess. And a specification of a set of control-messages providing
each node with sufficient topological information to be ableto
compute an optimal route to each destination in the network us-
ing any shortest-path algorithm.

Experimental work, running a test-network of laptops with
IEEE 802.11 wireless cards, revealed interesting properties.
While the protocol, as originally specified, works quite well,
it was found, that enforcing “jitter” on the interval between the
periodic exchange of control messages in OLSR and piggyback-
ing said control messages into a single packet, significantly re-
duced the number of messages lost due to collisions. It was also
observed, that under certain conditions a “naive” neighborsens-
ing mechanism was insufficient: a bad link between two nodes
(e.g. when two nodes are on the edge of radio range) might on
occasion transmit a HELLO message in both directions (hence
enabling the link for routing), while not being able to sustain
continuous traffic. This would result in “route-flapping” and
temporary loss of connectivity.

With the experimental results as basis, we have been de-
ploying simulations to reveal the impact of the various algorith-
mic improvements, described above.

1. Introduction
A mobile ad-hoc network (MANET) is a collection of nodes,
which are able to connect on a wireless medium forming an
arbitrary and dynamic network with “wireless links”. That is,
over time the links between the nodes may change due to node
mobility, nodes may disappear and new nodes appear in the net-
work. The physical size of a MANET is expected to be larger

than the radio range of the wireless interfaces, thus for anytwo
nodes in the network to be able to communicate, routing of traf-
fic through a multi-hop path is necessary.

In addition to the challenge presented by routing in tradi-
tional wired networks, a routing protocol for MANETs must
be able to respond to a high degree of topological changes in
the network and still maintain stable routing. Also, the pecu-
liarities of wireless interfaces (such as the inherent differences
from wired media in medium access characteristics as well as
the broadcast nature), must be taken into account. Finally,the
fact that the available bandwidth on a wireless link currently is
orders of magnitude smaller than that available in wired net-
works, requires that a protocol be carefully designed to reduce
the amount of control traffic generated.

Several protocols exist, addressing the problems of routing
in mobile ad-hoc networks. Such protocols are, traditionally,
divided into two classes, depending on when a node acquires a
route to a destination.Reactiveprotocols are characterized by
nodes acquiring and maintaining routes on-demand. I.e. a route
to a destination is not acquired by a node before a packet to that
destination appears in the node, delaying the transmissionof a
packet until a route is available (or until it is found that a route is
unobtainable). Examples of reactive protocols include the“Ad
Hoc On Demand Distance Vector Routing Protocol” (AODV)
[2] and “Dynamic Source Routing” (DSR) [3].Proactivepro-
tocols are characterized by all nodes maintaining routes toall
destinations in the network at all times. Thus, using a proac-
tive protocol, a node is immediately able to route (or drop) a
packet. Examples of proactive protocols include the “Mobile
Mesh Routing Protocol” (MMESH) [4] as well as the “Opti-
mized Link State Routing Protocol” (OLSR) [1], as described
in this paper.

1.1. Paper outline

The remainder of this paper will be organized as follows: in
section 2, we describe the OLSR protocol as a flexible proac-
tive routing protocol for MANETs, emphasizing the three in-
dependent components making up the protocol. In section 3 we
describe our experiences from conducting practical experiments
with the protocol. This includes some inconveniences encoun-
tered, and the measures taken to counter these. Section 4 de-
scribes our simulation results, further uncovering attributes of
the protocol. Section 5 will discuss our results, and the paper is
concluded in section 6.



2. The Optimized Link State Routing
Protocol

OLSR [1] is a proactive, link-state routing protocol, employing
periodic message exchange to update topological information
in each node in the network. That is, topological information
is flooded to all nodes in the network, providing routes imme-
diately available with a constant, low control traffic overhead -
regardless of data load and node mobility causing link breakage.

Conceptually, OLSR contains three generic elements: a
mechanism for neighbor sensing, a mechanism for efficient
flooding of control traffic, and a specification of how to select
and diffuse sufficient topological information in the network in
order to provide optimal routes. These elements are described
in details in the following.

2.1. Neighbor Sensing

Neighbor sensing is the process through which a node detects
changes to its neighborhood. This section will describe in detail
the neighbor sensing mechanisms included in OLSR.

2.1.1. Definitions

A nodea is said to be aneighborof another nodeb if there ex-
ists a direct link between the two nodesa andb, allowing data to
be transmitted in either or both directions of the link. The link
between two neighboring nodes can further be characterizedby
the direction in which communication is possible. Thus, if com-
munication is possible from nodea to nodeb (i.e. traffic from
nodea can be received at nodeb) and from nodeb to nodea,
the link is said to besymmetric. If communication is possible
in only one direction, the link is said to beasymmetric. Uncer-
tainties in radio propagation (e.g. atmospheric interference or
physical obstacles) may make links between otherwise identical
nodes with identical, omni-directional antennas, asymmetric.

A node c is further said to be atwo-hop neighborof the
nodea if nodea and nodec are not the same node and if nodec
is not a neighbor of nodea and if there exists a symmetric link
between nodec and a node in the neighborhood of nodea, with
which nodea has a symmetric link.

2.1.2. Neighbor Sensing in OLSR

OLSR aims at being completely independent of the underlying
link-layer being used. Thus, even though OLSR might utilize
information available from an underlying link-layer, character-
izing the existence and quality of the links, the protocol spec-
ifies mechanisms for neighbor sensing, including the ability to
detect the link “characteristics” (in terms of symmetry or asym-
metry as described above).

In OLSR, a node emits HELLO-messages periodically.
Changes in the neighborhood is detected from the information
in these messages. A HELLO-message contains the emitting
node’s own address and the list of neighbors known to the node,
including the status of the link to each neighbor (e.g. symmet-
ric or asymmetric). A node thereby informs its neighbors with
which neighbors, and in what direction(s), communication has
been confirmed.

Upon receiving a HELLO-message, a node can thus gather
information describing its neighborhood and two-hop neighbor-
hood, as well as detect the “quality” of the links in its neighbor-
hood: the link from a nodea to a neighborb is symmetric if
in the HELLO-message fromb the nodea sees its own address
(with any link status) - otherwise the link is asymmetric.

(a) (b)

Figure 1:Example of pure flooding (a) and flooding using Mul-
tipoint Relays (b). The source of the message is the node in the
center. Each arrow pointing to a node, indicates that a node
receives a copy of the message. The filled nodes are selected by
the center node as Multipoint Relay.

Each node maintains an information set, describing the
neighbors and the two-hop neighbors. Such information is con-
sidered valid for a limited period of time, and must be refreshed
periodically to remain valid. Expired information is purged
from the neighbor- and two-hop neighbor sets.

2.2. Generic message flooding

HELLO-messages are exchanged between neighbors only, and
provide a node with topological information describing its
neighborhood and two-hop neighborhood. However, since
MANETs can be of arbitrary size, a method for flooding topo-
logical information into a network of any size is required. Thus
OLSR introduces an efficient, generic way of flooding control
traffic to all nodes in the network.

The task at hand is to provide a method for a node to emit a
control message, which will be flooded into the entire network
in an “efficient” way. In this context, we define “efficient” to
mean that the interface of each node receives the same, flooded
message once. This implies, that all nodes actually receivethe
message, as well as that there have been no unnecessary, dupli-
cate retransmissions of the message.

The message flooding mechanism in OLSR is based on an
optimization of the simple flooding strategy, where all nodes
receiving a message to be flooded, relay (forward) the message
the first time they receive the message. Thus, a node would
perform some “local duplicate elimination”, while there would
be nothing preventing two neighboring nodes from relaying the
same message to the same nodes, as illustrated in figure 1a.

Ignoring message loss due to collisions, this ensures that
all reachable nodes receive a message at least once - though,as
illustrated in figure 1a, quite likely more than once. This isa
problem since, when a message is transmitted over the wireless
medium, all other nodes within radio range of the transmitting
node will either have to remain silent, or will cause message
loss due to collisions.

In OLSR, the problem of duplicate transmissions of a mes-
sage within a region is addressed through the notion of mul-
tipoint relays (MPRs)[5]. A node selects a set of symmetric
neighbor nodes as MPRs, implying that each node has a (pos-
sibly empty) set of nodes, which have selected it as multipoint
relays. This set is called the MPR selector set. A node, then,has
the responsibility of relaying messages, emitted from its MPR
selectors, while not relaying messages from any other nodes.
As illustrated in figure 1b, careful selection of MPRs (the filled
nodes) may greatly reduce duplicate retransmissions.

While selecting MPRs, a node utilizes information describ-



ing the two-hop neighbors, as acquired from the neighbor sens-
ing process. All nodes select their MPRs independently, pos-
sibly choosing different algorithms / heuristics for selecting a
“minimal” MPR set. The invariant for the algorithms being,
that a message, emitted by the node and relayed by its MPRs,
must reach all the node’s two-hop neighbors.

A node is informed of its MPR selector set through infor-
mation, piggybacked to the HELLO-messages.

In order for a node to forward a control message, the fol-
lowing conditions must thus be satisfied:

1. the message must be meant to be forwarded (indicated
by information in the header of the message),

2. the message must not have been received by the node
before,

3. the node must have been selected as MPR by the node,
from which the message was received

The OLSR protocol specification [1] defines a generic mes-
sage format and an algorithm for processing such messages.
This includes time-to-live considerations etc., out of scope for
this description.

2.3. Topology information

With mechanisms for neighbor sensing and for flooding mes-
sages to all nodes in the network in place, the final task for the
routing algorithm is to diffuse a sufficient set of topological in-
formation to all nodes in the network.

In OLSR, all nodes with a non-empty MPR selector set pe-
riodically generate a topology control message (TC-message).
This TC-message is diffused to all nodes in the network as de-
scribed in section 2.2. A TC-message contains the address of
the node generating the TC-message, as well as the addressesof
all the MPR selectors of that node. Thus through a TC-message,
a node effectively announces reachability to all its MPR selec-
tors. Since all nodes have selected an MPR set, reachabilityto
all nodes will be announced through the network. The result is
that all nodes will receive a partial topology graph of the net-
work, made up by all reachable nodes in the network and the
set of links between a node and its MPR selectors. Using this
partial topology graph, it is possible to apply a shortest path al-
gorithm for computing optimal routes from a node to any reach-
able destination in the network [1].

The topological information in each node is valid for a lim-
ited period of time, and must be refreshed periodically to remain
valid. Expired information is purged from the topology graph.

3. Experimental results
Our practical experiments were conducted on a test network of
desktop and laptops, equipped with IEEE 802.11 wireless inter-
faces. Our test setup spanned from 3 to 10 nodes, and a number
of different experiments were conducted. The purpose of the
experiments were to serve partially as a “proof of concept”,par-
tially as a way to indicate areas for possible optimizationsand
further investigations through simulations of larger setups.

3.1. Proof of concept

We first set up our test network as illustrated in figure 2a, and
observed, that routing was indeed established from nodea to
nodef, following the path indicated by the arrows. Using nodea
as a traffic source1 and nodef as a destination, we removed node

1Effectively, nodea was forwarding a RealAudio stream
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Figure 2: Example of routing in OLSR. Node a is a traffic
source, node f destination for traffic. (a) indicates the used path
from a to f. (b) indicates the path after the routing protocolwas
able to recover after node d crashes (indicated by the cross-out
of node d).

d from the network, as illustrated by the “cross” in figure 2a.
We observed, that after a short time (bound by the time neighbor
information is stored in each node), a new route was established,
following the path indicated by the arrows in figure 2b.

3.2. Observations

Through further experiments with OLSR, the following inter-
esting observations were made:

1. Occasionally, in an otherwise static setup, routes to part
of the network would temporarily disappear, only to
reappear moments later. Investigations into this mat-
ter, revealed that this was due to the fact that the pe-
riodic emission of control messages from the individ-
ual nodes had become synchronized. I.e. neighboring
nodes would, at the same time, attempt to transmit a TC-
message, causing both messages to be lost due to colli-
sion. With the same interval between the periodic trans-
missions in all nodes, a number of sequential TC mes-
sages would be lost, causing topological information to
expire in the network. Experiments indicated that en-
forcing jitter (a small, random delay) on sending each
control messages resulted in fewer control messages to
collide, and hence in more stable routes.

2. In the same situation as above, it was found that piggy-
backing several control messages (e.g. TC messages to
be forwarded from different other nodes, as well as a lo-
cally generated TC and HELLO message) eased the load
on the network. This was due to the fact that through pig-
gybacking messages, fewer medium access cycles were
required for control traffic. Piggybacking was introduced
by allowing the generic message forwarding mechanism
to introduce a small delay before forwarding a message.

3. Occasionally, a node would, based on exchange of a
single, transient pair of HELLO messages, detect an-
other node as a symmetric neighbor. Despite that the
two nodes only occasionally could communicate directly
(i.e. the link was not stable in the symmetric state),
OLSR would choose to route traffic to that node directly,
rather than through another, intermediate, node with sta-
ble links. It was found, that strengthening the require-
ment for accepting a node as a symmetric neighbor (e.g.
to require that a number of HELLO-messages are re-
ceived within a certain time-frame for a link to be “up”)
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Figure 3: The average number of packets sent, received, and
dropped because of route unavailability. The number are aver-
ages from test sets with and without enforced jitter on transmis-
sion of control packets.

made the network more resistant against such transient
situations - at the expense of a slower response to new
links.

4. Simulations
A distinguishing feature of the simulations presented in this
paper is the fact that the simulated scenarios are neither com-
pletely “random” nor selected to expose specific aspects of the
protocol. Rather, an automatic scenario generator has beende-
veloped. This scenario generator can take a set of simulation
parameters (simulation time, mobility, number of nodes, com-
munication parameters, field simulation size, groups) and gen-
erate a number of random scenarios, which may be different,
but yet conforming to the parameters of the situation. This en-
ables automatic simulation of a large number of scenarios with
the same characteristics. Thus the effects of a favorable pick on
the simulation results is averaged out.

Our simulations are performed using the ns2 [6] network
simulator. A test set with 30 simulations are performed and sta-
tistical tools have been used to analyze the results. The simula-
tions are all generated with the same standard parameters. The
field size is 1000x1000 meters with 50 nodes moving from 1 to
5 m/s and resting between 0 and 6 seconds at each way-point.
The simulation time is 250 seconds with 25 traffic streams of 64
bytes packets send with an 0.10 second interval.

4.1. Enforced Jitter

To test the effect of enforced jitter on the transmission of control
messages, test sets with and without jitter were performed.The
jitter was chosen from the interval[�0:5; 0:5℄.

Figure 3 shows the average amount of packet that were sent,
received, and dropped due to route unavailability. As the figure
shows the same amount of packets were sent in both test sets.
The number of received packets, and packets dropped because
of no route are however very different. Without jitter half as
many packets reaches their destination as with jitter, while the
amount of packets lost due to route unavailability is six times
the amount of the simulations with jitter.

Statistical analysis furthermore showed that the dispersion
of the results without jitter was substantially larger thanthose
with jitter as seen in figures 4 and 5. This means that the per-
formance with enforced jitter is not only better, but also more
stable than without jitter.
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4.2. Piggybacking

When testing the effect of piggybacking control messages, jitter
was initially enforced due to the good results as stated above.
Test sets with holdback time (i.e. the maximum time a message
was held back, waiting for other messages to be piggybacked
onto) of 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 seconds were performed.

Figure 6 shows the average amount of packet that were sent,
received, and dropped due to route unavailability in the situation
where the nodes enforced both jitter and piggybacking. As the
figure shows the same amount of packets were sent in all test
sets. No significant impact of a shorter or longer holdback time
can be observed. An initial hypothesis was, that the effectsof
piggybacking were, in fact, masked out by the jitter - which,as
described, could offset the emission by up to� 0.5s and thereby
implicitly facilitate piggybacking.

Thus, to confirm this, we conducted the same simulations
without jitter, as illustrated in figure 7.

It can be observed, when comparing to figure 6, that the
effect of jitter is significant and that, without jitter, substantially
more packets are dropped due to a route to the destination being
unavailable.

In a network without mobility - and hence without link
breakages - OLSR with piggybacking performed as illustrated
in figure 8: the ratio of received packets is much higher than in
the situations with mobility.

In figure 9, we compare running OLSR with and without
piggybacking and with and without jitter. Figure 9 show the av-
erage number of packet from the test sets without anything, with
enforced jitter, with jitter and piggybacking (holdback time: 0.2
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dropped because of route unavailability with piggybackingonly.
The numbers are averages from test sets with holdback time
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seconds), and finally without jitter but with piggybacking (hold-
back time: 0.2 seconds). We have chosen to show the results
with piggybacking with a holdback time of 0.2 seconds, be-
cause this gave the best results in the piggyback tests. The fig-
ure shows, that the effects of piggybacking are not significant,
while jitter has a high, positive impact. While not an impos-
sible situation, this does contradict our experiments, in which
both piggybacking and jitter was found to have a positive effect
on performance. We will return to this issue in section 5.

5. Discussion
It is our belief, that through using a scenario generator andcon-
ducting a large number of simulations, the results presented are
more fair and trustworthy than if a favorable pick of a few sce-
narios had been performed to exhibit the protocols positiveor
negative sides. That said, there are evidently discrepancies be-
tween the experimental results and the data obtained by simula-
tions. While the introduction of jitter yielded positive results in
both the experiments and in the simulations, the introduction of
piggybacking in the simulations had virtually no effect in con-
trast to observations from the experiments. The course of this
discrepancy is currently unidentified. We do, however, suspect
that it may be due to either the “perfect” transmission modelof
ns2 (e.g. no interference from the environment) as well as dis-
crepancies between the actual link layer used, and the one being
simulated by ns2. This is an area where further investigations
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Figure 9: The average number of packets sent, received, and
dropped because of route unavailability. The number are av-
erages from test sets of “pure” OLSR, OLSR with jitter, OLSR
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are required.
The improvements to the neighbor sensing mechanism,

suggested by the experiments, for identifying only “stable”
neighbors as symmetric (and thereby allowing those to be used
for data traffic), have not been simulated. While simulations and
further testing is desirable, it is unclear how much simulations
would reveal: the transmission model of ns2 is perfect. The
common real-life situation, where transient reflections ordrop
in background noise would allow only some of the HELLO-
messages to be exchanged, will not be captured by the simu-
lations. Realistic simulations and exhaustive testing hereof is
another area where further investigations are required.

An issue, which has not been discussed through this paper,
is the optimality of the proposed optimizations. E.g. for pig-
gybacking, what is the optimal “deadline” at which all queued
messages in a node must be sent? The simulations and the ex-
periments have been performed using a constant holdback time,
however other metrics could be envisioned. A node could, e.g.,
choose to hold all messages it is required to forward until ititself
is due to emit a control message (HELLO or TC). Alternatively,
using a constant holdback time, a node could force emission of
extra HELLO- and/or TC-messages, to increase the networks
reactiveness to topology changes.

Likewise, different algorithms for detecting a neighbor
node can be proposed. In our experiments, we required that
a constant ratio of HELLO messages were delivered (e.g. 2
out of 3 expected). Alternative proposals could include various



metrics for weighting HELLO messages, giving more weight to
recent messages while still taking the older history of the link
into account when estimating stability.

6. Conclusions
Our experiments and simulations have shown that the proposed
protocol for routing in MANETs works - in most situations, it
even works well. Our experiments revealed shortcomings in a
couple of situations. Noticeably, the neighbor sensing mecha-
nism did, occasionally, cause a transient (and hence unstable)
link to be reported as “symmetric”, and thus eligible for rout-
ing. Also noticeably, loss of control messages due to collisions
on the link layer caused temporary loss of routes to some desti-
nations in the network.

We suggested and implemented solutions to these prob-
lems, in form of jitter, piggybacking and improvement to the
neighbor sensing mechanism, and observed that they did pro-
vide significant improvements. Simulating jitter and piggy-
backing in ns2 qualified the statement that using jitter with
OLSR was a significant improvement over OLSR alone, while
no significant effect could be determined from piggybacking.
The course for the discrepancy between the experiments and the
simulations on the topic of piggybacking is to be determined,
however is suspected to be due to differences between the link
layer used for the experiments and the link layer used in the
simulations.
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