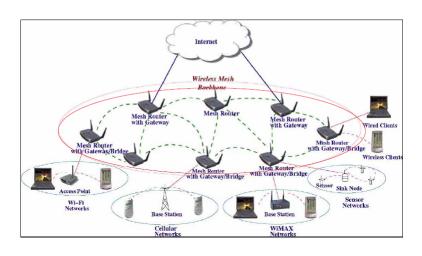
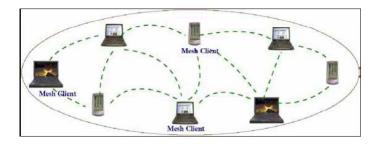

Introduction to WMNs and MANETs

COSC 6590 Fall 2009 Dept. of CSE – York University

1

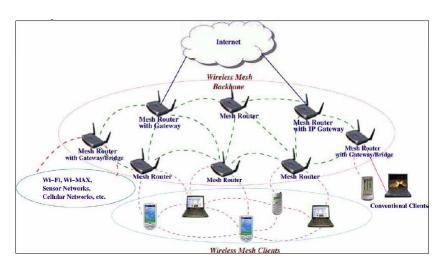
Course Information


• Refer to the course web page.


Wireless Mesh Networks

- WMNs consist of two types of nodes:
 - mesh routers: forwarding data.
 - mesh clients: acting as hosts; forwarding data.
- The architecture of WMNs can be classified into three main groups:
 - Infrastructure/Backbone
 - Client WMNs
 - Hybrid WMNs

Infrastructure/Backbone



Client WMNs

- One type of radio on devicesSupporting end-user applications

Hybrid WMNs

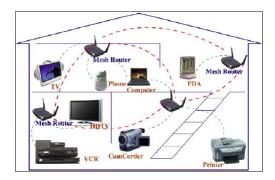
7

Characteristics

- Multi-hop wireless networking
 - Extend the coverage range
 - Provide non-line-of-sight connections
- Ad hoc networking
- Self-forming, self-healing, self-organization
- Low upfront investment costs
- Quick deployment

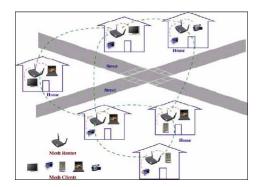
Characteristics (2)

- Enabling integration of various existing networks (WiFi, WiMax, Internet, cellular, sensor networks) through gateway/bridge functionalities in mesh routers.
- Mobility: depending on the type of mesh node
- Power and resource constraints:
 - mesh router: usually non restrictive
 - mobile devices: limited power supply, storage, computing resources.

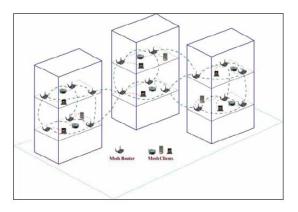

9

Applications

- Broadband Home Networking
- Community Networking
- Enterprise Networking
- Metropolitan Area Networks
- Transportation Systems
- Building Automation
- Health and Medical Systems
- Security Surveillance Systems

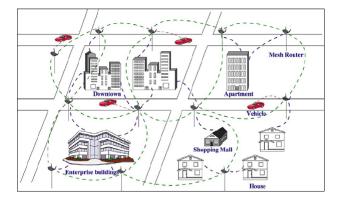

LO

Broadband Home Networking

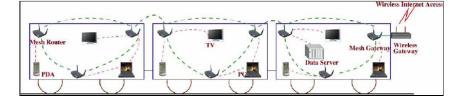


11

Community Networking

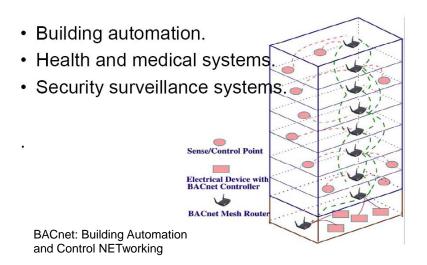


Enterprise Networking



13

Metropolitan Area Networks



Transportation Systems

1.5

Many Other Applications

WMNs: Challenges

- Wireless channels: error-prone media
- Low bandwidth channels
- Scalability
- Quality of service (QoS) guarantee
- Security
- Comparability, interoperability
- Mobility

17

Scalability

- When the size of network increases, the network performance degrades significantly.
- Current IEEE 802.11 MAC protocol and its derivatives cannot achieve a reasonable throughput as the number of hops increases to 4 or higher (for 802.11b, the TCP throughput is lower than 1 Mbps).

Single Channel: Capacity

• Theoretical upper limit of the per node throughput capacity:

$$O(1/\sqrt{n})$$

• Experimental results from CSMA/CA MAC on a string topology: throughput $\approx 1 / n$

19

Scalability (2)

- Routing protocols may not be able to find a reliable routing path.
- Transport protocols may loose connections.
- MAC protocols may experience significant throughput reduction.

Scalability (3)

- CSMA/CA has very low frequency spatialreuse efficiency.
- Centralized medium access schemes such as TDMA, CDMA are difficult to implement
 - Ad hoc nature of WMNs
 - Complexities of TDMA, CDMA
 - Time synchronization of TDMA

21

Security

- Routers, devices: physically vulnerable
- Jamming attacks
- No centralized trusted authority to distribute public keys in a WMN due to distributed system architecture.

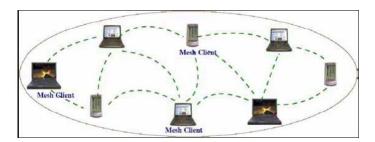
Critical Design Factors

- Scalability
- Security
- Compatibility and interoperability
 - WiFi, WiMax, ZigBee, cellular, Internet
- Broadband and QoS
 - end-to-end delay, delay jitter, PDR, throughput, fairness
- Mesh connectivity
 - Self-organization, topology control
 - Topology-aware MAC and routing

23

Critical Design Factors (2)

- Ease of use
 - As automatic as possible (power management, selforganization, topology control, fault tolerance, fast subscription/authentication)
 - For quick and inexpensive deployment
- Radio techniques
 - Directional and smart antennas
 - MIMO systems
 - Multi-radio/multi-channel systems
 - Software radio


Mobile Ad hoc Networks

- MANETs
- No infrastructure (no base stations or access points)
- Mobile nodes
 - Form a network in an ad-hoc manner
 - Act both as hosts and routers
 - Communicate using single or multi-hop wireless links
- Topology, locations, connectivity, transmission quality are variable.

25

MANETs: Operations Value of the control of the con

MANETs vs. WMNs

- One type of radio on devices
- Supporting end-user applications

27

MANETs vs. WMNs (2)

- MANETs: end-user devices also perform routing and configuration functionalities for all other nodes.
- WMNs: mesh routers perform these tasks.
- Mesh routers vs. mobile devices:
 - power and resource constraints
 - mobility
- MANETs: usually only one radio.
- WMNs: can have multiple channels, multiple radios.

MANETs: Applications

- Civil
 - Disaster recovery
 - Taxi cabs
 - Communications over water using floats
 - Vehicular ad-hoc network
- Military
 - Battlefield communications
 - Monitoring and planning

20

MANETs: Challenges

- Wireless channels: error-prone media
- Low bandwidth channels
- Security
- Unpredictable mobility
- Devices: low power, limited resources
- Maintaining connectivity, states

References

- Wireless Mesh Networks (Akyildiz), chapter 1
- Ad Hoc Wireless Networks (Murthy)