
York University CSE 6117 November 3, 2009

Homework Exercise #6

Due: November 10, 2009

1. The model of computation for this question is an asynchronous shared-memory system of n

processes. The shared memory consists of linearizable registers. Processes may experience
crash failures.

A Prod object stores a positive number (initially 1) and provides two types of operations:

• Mult(x) multiplies the value stored in the object by x and returns Ack (where x is
a positive integer).

• Product returns the current state of the object without changing it, and

(a) Show that the following implementation of a Prod object is not linearizable. It uses n

shared registers, denoted R1, . . . , Rn and the code below is for process Pi. Each register
initially contains 1.

Mult(x)
v ← read(Ri)
write(v ∗ x) into Ri

return Ack

end Mult

Prod

result← 1
for i = 1 to n

result← result ∗ read(Ri)
end for
return result

end Prod

(b) Is the implementation in part (a) linearizable if the only argument allowed for Mult

operations is 2?

(c) Describe how the Prod object can be implemented in a linearizable and lock-free way.
The implementation should work for all possible arguments to Mult operations, not
just 2. (“Lock-free” will be defined in the Nov 5 lecture, but it means that, even if
some processes crash, whenever there are pending operations on the Prod object by
non-faulty processes, one of those operations will eventually finish.)

1


