Defining
 Binary \& Unary Operators

English-French Dictionary

\diamond Can use compound terms to represent a dictionary
> list is a structure that contains an entry followed by the rest of the list
> For example list (entry (book, livre), list (entry (man , homme) , list (entry (apple, pomme), empty)))
\diamond Illustrates how compound terms could be used

English-French Dictionary - 2

\diamond Define a custom member function for the list structure

member (X , list (X, _)). member (\mathbf{X}, list (_ , L)) :- member (X, L).

English-French Dictionary - 3

\diamond Here is a predicate that defines the correspondence between English and French words.

englishFrench1(English , French) :member (entry (English , French), list (entry (book, livre), list (entry (man , homme) , list (entry (apple, pomme), empty))))

English-French Using Standard Lists

\diamond We could use the standard list structure.
> The standard member predicate
member (X,[XI_]).
member ($\mathrm{X},[\mathrm{I}$ I $]$) :- member (X, R).
> The translation predicate
englishFrench2 (English , French) :member (entry (English , French),
[entry (book, livre), entry (man , homme), entry (apple , pomme)].

English-French Different Dictionaries

\diamond We could change the rule to use a dictionary that holds the list structure
> It is easier to understand the rule
englishFrench3 (English , French , Name) :dictionary (Name , Dictionary) , member (entry (English, French), Dictionary)
> where we have a fact defining the dictionary. It is easier to change the dictionary and to use it in other contexts

Different Dictionaries

dictionary(Name, D) :-

$$
\begin{aligned}
\text { Name = d1, } \mathrm{D}= & {[\text { entry (book, livre) }} \\
& \text { entry (man , homme) } \\
& \text { entry (apple , pomme)]; }
\end{aligned}
$$

$$
\begin{aligned}
\text { Name = d2, D = } & {[\text { entry (book , koob) , }} \\
& \text { entry (man , nam), } \\
& \text { entry (apple , elppa)]. }
\end{aligned}
$$

Use an infix member function

\diamond The previous definition is not a natural way of representing the member function
\diamond A more "natural" use of member is as an infix operator, as in the following
> Use the letter e to represent the mathematical symbol belongs to ($\mathrm{\square}$)
englishFrench4 (English, French) :entry(English,French) e [entry (book, livre), entry (man , homme) , entry (apple , pomme)
].

Use an infix member function

\diamond The infix operator e can be defined as follows
:- op (500, xfy , [e]).
> Later slides describe the meaning of the op predicate
$\diamond \mathrm{e}$ is a new operator (predicate) so we must create rules that define what it means
> Since e is defined to be infix its rules use infix syntax
$>$ Note the similarity with the definition of the member predicate
$\left.X \operatorname{Cl} \mathrm{XI}_{-}\right]$.
Xe[_IL]:- XeL.

Use an infix member function - 3

\diamond We can chose of the name of the operator
:- op(500, xfy, [belongs_to]).

X belongs_to [$\mathrm{X} \mathrm{I}_{-}$].
X belongs_to [_ I L] :- X belongs_to L.
englishFrench5 (English , French) :entry (English , French)
belongs_to
[entry (book, livre), entry (man, homme), entry (apple, pomme)
].

Bird - Mammal example

\diamond Define some properties of animals
> Use syntax that is similar to natural language
:- op(100, xfx, [has , isa , flies]).
Animal has hair :- Animal isa mammal.
Animal has feathers :- Animal isa bird.
owl isa bird.
cat isa mammal.
dog isa mammal.

Example with mulitple precedence

\diamond Plays and "and" are at different precedence levels.
\diamond Define

$$
\begin{aligned}
& :- \text { op (} 300, \text { xfx , plays }) . \\
& :- \text { op (} 200, x f y \text {, and }) .
\end{aligned}
$$

\diamond Example use
Term1 = jimmy plays football and squash.
Term2 $=$ susan plays tennis and basketball and volleyball.

Example with mulitple precedence - 2

\diamond What is the internal stucture when using operators as in the following?

Term1 = jimmy plays football and squash.
Term2 = susan plays tennis and basketball and volleyball.
\diamond Recall that everything within Prolog is represented with compound terms, so we have ...

$$
\begin{aligned}
& \text { Term1 = plays (jimmy , and (football , squash)) } \\
& \text { Term2 = plays (susan , and (tennis , } \\
& \text { and (basketball }, \\
& \text { volleyball))) }
\end{aligned}
$$

Example with mulitple precedence - 3

\diamond DeMorgan's law - make predicate syntax look similar to standard mathematics

$$
\begin{aligned}
& :-\quad \text { op(800, xfx, <==>). } \\
& :-\quad \text { op(} 700, \text { xfy, v }) . \\
& :- \text { op(600, xfy, \&). } \\
& :-\quad \text { op(} 500, \text { fy, } \sim) .
\end{aligned}
$$

\diamond Consider representing the following
$\sim(A \& B)<==>\sim A \vee \sim B . \quad U s e s$ the above
\diamond In standard Prolog, this could be represented as
equivalence (not (and (A, B)), or ($\operatorname{not}(A), \operatorname{not}(B)))$.
$>$ or, directly use the internal form
'<==>' ('~' ('\&' (A , B)), 'v ' ('~' (A) , '~' (B))).

Why have operators?

\diamond Introduce operators to improve the readbility of programs
" Can be infix, prefix or postfix
\diamond Operator definitions do not define any action, they only introduce new notation
" Operators are functors that hold together the components of compound terms or structures
\diamond A programmer can define their own operators
" with their own precedence and associativity
" programmer defined operators can be merged in precedence and associativity with the Prolog builtin operators

op Predicate

\diamond Define one or more operators with a given precedence, associativity

```
op ( precedence,
associativity,
symbol or symbol list
)
```

\diamond Pages 107.. 108 give a listing of the predicates defining the "standard" operators in Prolog

op Precedence component

\diamond Precedence
» between 0 and 1200 - the precedence class
» lower class numbers have higher priority
> higher priority implies do first
" Example
$3+4$ * $5=3+(4$ * 5)
》 * (precedence class 400) has lower number than + (precedence class 500) so times is done first
» Can always use () to force the order of using operators
> Useful when you do not know relative precedence or to make it clear to the reader

Expression Precedence Class

\diamond Precedence class of base operand is 0 .
\diamond Precedence class of expression with operator, oper, is the precedence class of oper

op Associativity component

\diamond Associativity
" Defines which operands belong to which operator when several operators are used in sequence
» For example in the following
A oper B
$>$ is oper a unary operator with operand A
is oper a unary operator with operand B
is oper a binary operator with operands A and B
\diamond Can define oper as unary operator with ... op (100 , fy , oper). -- unary prefix op (100 , fx , oper). -- unary prefix op (100 , xf , oper). -- unary postfix op (100 , yf , oper). -- unary postfix

Unary prefix associativity

$\diamond f y$
oper oper a . -- legal syntax
> oper a has equal precedence class with oper
$>y$ says operand of oper can have lower or equal precedence class
$\diamond f x$
oper oper a. -- illegal syntax
> oper a has equal precedence class with oper
> x says operand of oper must have lower precedence class
> must use () as follows
oper (oper a).

Unary postfix associativity

$\diamond \mathrm{yf}$

> a oper oper . -- legal syntax
> a oper has equal precedence class with oper
$>y$ says operand of oper can have lower or equal class
$\diamond x f$
a oper oper . -- illegal syntax
> a oper has equal precedence class with oper
> x says operand of oper must have lower precedence class
> must use ()
(a oper) oper .

op Associativity component - 2

\diamond Given
A oper B
\diamond Can define oper as a binary operator with ...
op (100 , xfy , oper). -- right associative
op (100 , yfx , oper). -- left associative
op (100 , xfx , oper). -- evaluate both operands first op (100 , yfy , oper). -- not defined, ambiguous

Right associative operator

\diamond Define

$$
\text { :- op (} 100 \text {, xfy , op1). }
$$

\diamond Test
> C becomes the full structure, L shows the substructure
C = 1 op1 2 op1 3 op1 $4, C=. . L$.
\diamond Result

$$
\begin{aligned}
\mathrm{C} & =1 \text { op1 } 2 \text { op1 } 3 \text { op1 } 4 \\
\mathrm{~L} & =\left[\begin{array}{llll}
\text { op1 }, & 1, & 2 & \text { op1 } 3 \text { op1 } 4
\end{array}\right] \\
& >\text { Left most op1 is evaluated last } \\
& >\text { Apply recursively }
\end{aligned}
$$

Left associative operator

\diamond Define

$$
\text { :- op (} 200 \text {, yfx , op2). }
$$

\diamond Test
> C becomes the full structure, L shows the substructure

$$
\text { C = } 1 \text { op2 } 2 \text { op2 } 3 \text { op2 } 4 \text {, C =.. L. }
$$

\diamond Result

$$
\begin{aligned}
\mathrm{C} & =1 \text { op2 } 2 \text { op2 } 3 \text { op2 } 4 \\
\mathrm{~L} & =[\text { op2, } 1 \text { op2 } 2 \text { op2 } 3,4] \\
& >\text { Right most op2 is evaluated last } \\
& >\text { Apply recursively }
\end{aligned}
$$

Evaluate both operands first

\diamond Define

$$
\text { :- op (} 300 \text {, xfx , op3). }
$$

\diamond Test

$$
\text { C = } 1 \text { op3 } 2 \text { op3 } 3 \text { op3 } 4, C=. . L .
$$

\diamond Result

$$
\text { C = } 1 \text { op3 } 2
$$

«Syntax Error - check operator precedences » op3
3 op3 4, C =.. L.
> Error because the middle op3 expects its operands to its left and right to have lower precedence class but they have equal precedence class

Evaluate both operands first - 2

\diamond Define

$$
\text { :- op (} 300 \text {, xfx , op3). }
$$

\diamond Test - with different operators to left and right of op3

$$
\text { C = } 1 \text { op1 } 2 \text { op3 } 3 \text { op2 } 4 \text {, C =.. L. }
$$

\diamond Result

$$
\begin{aligned}
\mathrm{C} & =1 \text { op1 } 2 \text { op3 } 3 \text { op2 } 4 \\
\mathrm{~L} & =\left[\begin{array}{l}
\text { op3 }, 1 \text { op1 } 2,3 \text { op2 } 4
\end{array}\right] \\
& >\text { op1 and op2 are done first (higher priority, lower } \\
& \text { precedence class) } \\
& >\text { op3 is done last }
\end{aligned}
$$

