Prolog and the Resolution Method

The Logical Basis of Prolog

Chapter 10

Background

- Prolog is based on the resolution proof method developed by Robinson in 1966.
- Complete proof system with only one rule.
 - » If something can be proven from a set of logical formulae, the method finds it.
- Correct
 - » Only theorems will be proven, nothing else.
- Proof by contradiction
 - Add negation of a purported theorem to a body of axioms and previous proven theorems
 - » Show resulting system is contradictory

Propositional Logic

Infinite list of propositional variables

$$> a, b, ..., z, p_1 ... p_n, q_n ... q_r, ...$$

Logical connectives

```
\rightarrow \neg \land \lor \rightarrow \Leftrightarrow
```

- The set of fomula's of propositional logic is the smallest set, FOR, such that
 - » Every popositional variable is in FOR
 - » If A and B are elements of FOR then ¬A, A ∧ B, A ∨ B, A → B, A ↔ B are elements of FOR
- Every variable represents 0 or 1

Propositional clauses – informal

- Have a collection of clauses in conjunctive normal form
 - » Each clause is a set of propositions connected with or
 - » Propositions can be negated (use not ~)
 - » set of clauses implicitly anded together
- ♦ Example

```
A or B
C or D or ~ E
F
(A or B) and (C or D or ~ E) and F
```

Clausal Form

 A clause is an expression of the following form, called clausal form

$$l_0, l_1, l_2, \dots l_k \leftarrow d_0, d_1, d_2, \dots d_m$$

commas are disjunctions

 $a \leftarrow b \equiv a \lor \neg b$

As a consequence the clausal form can be written as

$$l_0 \vee l_1 \vee l_2 \vee ... \vee l_k \vee \neg (d_0 \wedge d_1 \wedge d_2 \wedge ... \wedge d_m)$$

Using de'Morgans law

$$l_0 \lor l_1 \lor l_2 \lor ... \lor l_k \lor \neg d_0 \lor \neg d_1 \lor \neg d_2 \lor ... \lor \neg d_m$$

Conjunctive Normal Form

♦ If $S = \{c_0, c_1, c_2, ... c_k\}$ are a set of clauses then the representation of S is the formula

$$\alpha = \alpha_{c0} \wedge \alpha_{c1} \wedge \alpha_{c2} \wedge \dots \wedge \alpha_{ck}$$

- α is in CNF (conjunctive normal form)
- \diamond α_{ci} is a disjunction of variables and their negations
- \diamond α is a conjunction of these disjunctions

Every formula can be converted to CNF

Contradiction in a set of clauses

- ♦ The set { p ∧ ¬p } is a contradiction of clauses
- ♦ In clausal form this is

We say that resolving upon p gives [] the empty clause which is false.

Propositional case – Resolution

- What happens if there is a contradiction in the set of clauses
- Example only one clause
- Add ~P to the set of clauses

```
P ~ P ==>
P and ~ P ==>
[] -- null the empty clause is false
```

Think of P and ~P canceling each other out of existence

Resolution rule

Given the clause

and the clause

```
R or P
```

then resolving the two clauses is the following

```
(Q or ~R) and (R or P)
==>
Por Q -- new clause that can be added to the set
```

Combining two clauses with a positive proposition and its negation (called literals) leads to adding a new clause to the set of clauses consisting of all the literals in both parent clauses except for the literals resolved on

Resolution rule – 2

Given the clause

$$L_1$$
 or L_2 or ... or L_p or $\sim R$

and the clause

R or
$$K_1$$
 or K_2 or ... or K_q

then resolving the two clauses is the following

```
(L<sub>1</sub> or L<sub>2</sub> or ... or L<sub>p</sub> or ~R) and (R or K<sub>1</sub> or K<sub>2</sub> or ... or K<sub>q</sub>)
==>
(L<sub>1</sub> or L<sub>2</sub> or ... or L<sub>p</sub> or K<sub>1</sub> or K<sub>2</sub> or ... or K<sub>q</sub>)
```

-- new clause that can be added to the set

Resolution method

- Combine clauses using resolution to find the empty clause
 - » Implying one or more of the clauses in the set is false.
- Given the clauses

```
    P
    ~P or Q
    ~Q or ~R
    R
```

Can resolve as follows

```
    5 P and (~P or Q) ==> Q resolve 1 and 2
    6 Q and (~Q or ~R) ==> ~R resolve 5 and 3
    7 ~R and R ==> [] resolve 6 and 4
```

Resolution method – 2

- Using resolution to prove a theorem
 - > 1 Given the non contradictory clauses
 - assuming original set of clauses is true

```
P
~P or Q
~ Q or ~R
```

> 2 Add the negation of the theorem, ~R, to be proven true

R

- Clause set now contains a contradiction
- > 3 Find [] showing that a contradiction exists, (see previous slide)
- > 4 implies R is false, hence the theorem, ~ R, is true

Resolution method – 3

- In general resolution leads to longer and longer clauses
 - » Length 2 & length 2 --> length 2 (see earlier slide) no shorter
 - » Length 3 & length 2 -> length 3 (longer)
 - » In general length p & length q --> length p + q 2 (see earlier slide)
- Non trivial to find the sequence of resolution rule applications needed to find []
- But at least there is only one rule to consider, which has helped automated theorem proving

The Big Question

How does all this relate to Prolog?

If A then B – Propositional case

- Example 1: In prolog we write
 - A :- B.
- Which in logic is

Example 2

A if B and C and D

==> if B and C and D then A

==> A or ~B or ~C or ~D

Clausal form A ← B

Clausal form $A \leftarrow B, C, D$

If A then B – Propositional case – 2

♦ Example 2

```
if B and C and D then P and Q and R
==> ~B or ~C or ~D or (P and Q and R)
==> (~B or ~C or ~D) or (P and Q and R)
==> ~B or ~C or ~D or P
    ~B or ~C or ~D or Q
                                       distribution
    ~B or ~C or ~D or R
 > In Prolog
                                  Clausal form
                                  P \leftarrow B, C, D
P:-B,C,D.
                                  Q \leftarrow B, C, D
Q:-B,C,D.
                                  R \leftarrow B, C, D
R:-B,C,D.
```

If A then B – Propositional case – 4

Example 3

if B and C and D then P or Q or R

No single statement in Prolog for such an if ... then ..., choose one or more of the following depending upon the expected queries and database

```
P:-B,C,D,~Q,~R
Q:-B,C,D,~P,~R
R:-B,C,D,~P,~Q
```

Clausal form P, Q, R ← B, C, D

If A then B – Propositional case – 5

Example 4 if the_moon_is_made_of_green_cheese then pigs_can_fly ==> ~ the_moon_is_made_of_green_cheese or pigs_can_fly > In Prolog pigs_can_fly :the_moon_is_made_of_green_cheese

Prolog facts – propositional case

Prolog facts are just themselves.

```
A
P
the_moon_is_made_of_green_cheese
pigs_can_fly
```

Comes from

```
if true then pigs_can_fly
==> pigs_can_fly or ~true
==> pigs_can_fly or false
==> pigs_can_fly
```

In Prolog

```
pigs_can_fly :- true :- true is implied,
so it is not written
```

Query

- ♦ A query "A and B and C", when negated is equivalent to
 - if A and B and C then false
 - > insert the negation into the database, expecting to find a contradiction
- Translates to

false or ~A or ~B or ~C

==> ~A or ~B or ~C

Is it true pigs_fly?

Add the negated question to the database

```
If pigs_fly then false
==> ~pigs_fly or false ==> ~pigs_fly
```

If the database contains

```
pigs_fly
```

- Then resolution obtains [], the contradiction, so the negated query is false, so the query is true.
- Prolog distinguishes between facts and queries depending upon the mode in which it is being used. In (re)consult mode we are entering facts. Otherwise we are entering queries.

Predicate Calculus

- Step up to predicate calculus as resolution is not interesting at the propositional level.
- We add
 - \Rightarrow the universal quantifier for all $x \forall x$
 - \Rightarrow the existential quantifier there exists an x 3x
- Out in Prolog there are no quantifiers?
 - » They are represented in a different way

Forall $x - \forall x$

The universal quantifier is used in expressions such as the following

```
\forall x \cdot P(x)
```

> For all x it is the case that P(x) is true

```
∀x · lovesBarney (x)
```

- > For all x it is the case that lovesBarney(x) is true
- The use of variables in Prolog takes the place of universal quantification – a variable implies universal quantification

```
P(X)
```

> For all X it is the case that P(X) is true

```
lovesBarney ( X )
```

> For all x it is the case that lovesBarney(X) is true

Exists x - 3x

The existential quantifier is used in expressions such as the following

```
\exists x \cdot P(x)
```

> There exists an x such that P(x) is true

∃ x · lovesBarney (x)

- > There exists an x such that lovesBarney(x) is true
- Constants in Prolog take the place of existential quantification
 a constant implies existential quantification
 - The constant is a value of x that satisfies existence

P(a) a is an instance such that P(a) is true

lovesBarney (elliot) elliot is an instance such that lovesBarney (elliot) is true

Nested quantification

- ♦ ∃x∃y⋅sisterOf(x,y)
 - > There exists an x such that there exists a y such that x is the sister of y
 - > In Prolog introduce two constants

```
sister (mary, eliza)
```

- ♦ ∃x∀y⋅sisterOf(x,y)
 - > There exists an x such that forall y it is the case that x is the sister of y

```
sister (leila, Y)
```

> One constant for all values of Y

Nested quantification – 2

- \Diamond \forall x \exists y \cdot sisterOf (x, y)
 - > Forall x there exists a y such that x is the sister of y
 - > The value of y depends upon which X is chosen, so Y becomes a function of X

```
sisterOf(X,f(X))
```

- $\Diamond \forall x \forall y \cdot sisterOf(x,y)$
 - > Forall x and forall y it is the case that x is the sister of y

```
sisterOf(X,Y)
```

> Two independent variables

Nested quantification – 3

- $\Diamond \forall x \forall y \exists z \cdot P(z)$
 - > Forall x and for all y there exists a z such that P(z) is true
 - > The value of z depends upon both x and y, and so becomes a function of X and Y

```
P(g(X,Y))
```

- ♦ ∀x∃y∀z∃w⋅P(x,y,z,w)
 - > Forall x there exists a y such that forall z there exists a w such that P(x,y,z,w) is true
 - > The value of y depends upon x, while the value of w depends upon both x and z

Skolemization

- Removing quantifiers by introducing variables and constants is called skolemization
- ♦ Removal of ∃ gives us functions and constants functions with no arguments.
 - » Functions in Prolog are called structures or compound terms
- ♦ Removal of ∀ gives us variables
- Each predicate is called a literal

Herbrand universe

- The transitive closure of the constants and functions is called the **Herbrand universe** – in general it is infinite
- A Prolog database defines predicates over the Herbrand universe determined by the database

Herbrand universe – Determination

- It is the union of all constants and the recursive application of functions to constants
 - >> Level 0 Base level is the set of constants
 - » Level 1 constants are obtained by the substitution of level 0 constants for all the variables in the functions in all possible patterns
 - » Level 2 constants are obtained by the substitution of level 0 and level 1 constants for all the variables in the functions in all possible patterns
 - » Level n constants are obtained by the substitution of all level 0..n-1 constants for all variables in the functions in all possible patterns

Back to Resolution

- Predicate calculus case is similar to the propositional case in that resolution combines two clauses where two literals cancel each other
- With variables and constants we use pattern matching to find the most general unifier (binding list for variables) between two literals
- The unifier is applied to all the literals in the two clauses being resolved
- All the literals, except for the two which were unified, in both clauses are combined with "or"
- The new clause is added to the set of clauses
- When [] is found, the bindings in the path back to the query give the answer to the query

Example

Given the following clauses in the database

- Lets make a query asking if bob is a person
- The query adds the following to the database ~person (bob).
- Resolution with the first clause is immediate with no unification required
- The empty clause is obtained So ~person(bob) is false, therefore person(bob) is true

Example – 2

Given the following clauses in the database

- Lets make a query asking if bob is mortal
- The query adds the following to the database ~mortal (bob).
- Resolution with the second clause gives with X_1 = bob (renaming is required!)

```
~person (bob).
```

Resolution with the first clause gives []
 So ~mortal(bob) is false, therefore mortal(bob) is true

Example – 3

Given the following clauses in the database

```
person (bob). ~person(X) or mortal(X).
```

Lets make a query asking does a mortal exist The query adds the following to the database

```
~mortal (X). ~ (\exists x · mortal (x)) -- negated query
```

Resolution with the second clause gives with X_1 = X (renaming is required!)

```
~person (X_1).
```

Resolution with the first clause gives [] with X_1 = bob So ~mortal(X) is false, therefore mortal(X) is true with X = bob

Example – 4

Given the following clauses in the database

```
person (bob). ~person(X) or mortal(X).
```

- Lets make a query asking is alice mortal
 ~mortal (alice).
- Resolution fails with the first clause but succeeds with the second clause gives with X_1 = alice

```
~person (alice).
```

- Resolution with the first clause and second clause fails, searching the database is exhausted without finding []
- So ~mortal(alice) is true, therefore mortal(alice) is false

Example – 4 cont'd

 Actually all that the previous query determined is that ~mortal(alice) is consistent with the database and resolution was unable to obtain a contradiction

Prolog searches are based on a **closed universe**

Truth is relative to the database

Unification

- In order to use the resolution method with predicate calculus we need to be able to find the most general unifier (mgu) between two literals.
- p(a, b, c) and p(X, Y, Z)
 >> mgu = { X / a , Y / b , Z / c }
- p(a, f(b, a), c) and p(X, f(X, Y), Z)
 - » mgu does not exist

Factoring

- General resolution permits unifying several literals at once by factoring
 - > unifying two literals within the same clause if they are of the same "sign", both positive, P(...) or P(...), or both negative, ~P(...) or ~P(...)
- Why factor?
 - > Gives shorter clauses, making it easier to find the empty clause

Factoring – 2

For example given the following clause

```
loves (X, bob) or loves (mary, Y)
```

We can factor (obtain the common instances) by unifying the two loves literals

```
loves (mary, bob) X = mary and Y = bob
```

- The factored clause is implied by the unfactored clause as it represents a subset of the cases that make the unfactored clause true
 - > Can be added to the database without contradiction

Creating a database

- A large part of the work in creating a database is to convert general predicate calculus statements into conjunctive normal form.
- Much of Chapter 10 of Clocksin & Mellish describes how this can be done.

Horn clauses

- Clauses where the consequent is a single literal.
 - > For example, X is the consequent in
 - If A and B and C then X
- Horn clauses are important because, while resolution is complete, it usually leads to getting longer and longer clauses while finding contradiction means getting the empty clause
 - » Need to get shorter clauses or at least contain the growth in clauses
 - » General resolution can lead to exponential growth in both
 - > clause size
 - > size of the set of clauses

Horn clauses – 2

- Horn clauses have the property
 - > Every clause has at most one positive literal (un-negaged) and zero or more negative literals

- Facts are clauses with one positive literal and no negated literals, resolving with facts reduces the length of clauses
- Horn clauses can represent anything we can compute
 - » Any database and theorem that can be proven within first order predicate calculus can be translated into Horn clauses