
PI-1© Gunnar Gotshalks

Prolog Introduction

 Clocksin & Mellish Ch 1 & 2

PI-2© Gunnar Gotshalks

What is a Prolog Program?

◊ A program consists of a database containing one or more
facts

> A fact is a relationship between a collection of
objects

» dog (fido).
> Fido is a dog

 – it is true that Fido is a dog
» mother (mary, joe).

> Mary is the mother of Joe
 – it is true that Mary is the mother of Joe

» compete (ali, leila, tennis).
> Ali and Leila compete in tennis

 – it is true that Ali and Leila compete in tennis

PI-3© Gunnar Gotshalks

What is a Prolog Program? – 2

◊ Relationships can have any number of objects

◊ Names are usually chosen to be meaningful
» Within Prolog, names are just arbitrary strings. It

is people who give meaning to names.

PI-4© Gunnar Gotshalks

What is a Prolog Program? – 3

◊ And a program consists of a database of zero or more rules
> A rule is an if...then relationship of facts

» use (umbrella) :- weather (raining).
> use an umbrella if weather is raining

» use (umbrella) :- weather(raining) , own (umbrella).
> use an umbrella if weather is raining and you own an

umbrella
» use (umbrella) :- weather (raining) ,

 (own (umbrella) ; borrow (umbrella)).
> use an umbrella if weather is raining and you either

own an umbrella or can borrow an umbrella

PI-5© Gunnar Gotshalks

More on rules

◊ Rules have the general structure
 head :- body

» Only one fact can be in the head – the consequent
» The body is a boolean combination of predicates
» Use , (and) and ; (or) and () (parenthesis) to

logically organize the "condition" – the antecedent

◊ Rules are written backwards to
» emphasize the backward chaining for database

search
» be more regular in structure, since the head is only

one predicate

PI-6© Gunnar Gotshalks

Constants

◊ Constants are names of that begin with lower case letters
» ali, leila, tennis, dog, fido, mother, mary, joe,

umbrella, raining, weather, own, borrow
» names of relationships are constants

PI-7© Gunnar Gotshalks

Variables

◊ In place of constants in facts and rules one can have
variables
» variables are names that begin with upper case

letters
> X, Y, Who, Whom, List, Person
 loves (Everyone, barney).
> Everyone loves barney

– for all values of Everyone it is the case that
loves(Everyone, barney) is true.

 noisy (Singer) :- valkyrie (Singer) ;
 tenor (Singer).

> A Singer is noisy if they are a Valkyrie or a tenor

PI-8© Gunnar Gotshalks

Variables – 2

 dwarf (Person) :- brother (Person, Other) ,
 dwarf (Other).

> A person is a dwarf, if they the brother of other
and the other is a dwarf

» Variables can also begin with _ (underscore)
 _ (anonymous variable)

_1 _abc (not anonymous variable)

PI-9© Gunnar Gotshalks

Running a Prolog Program

◊ Programs are stored in one or more files that are consulted
◊ On Prism to run SWI Prolog enter

 % pl
◊ The following prompt appears

 | ?-
◊ Consult the appropriate file(s) – add to the database

 | ?- consult('ring.pro').
> While it is possible to enter facts and rules

interactively using consult (user), it is
inconvenient and error prone

> SWI-prolog does not have a reconsult predicate,
only consult is used.

PI-10© Gunnar Gotshalks

Running a Prolog Program – 2

◊ Make zero or more queries (next slides)

◊ Exit prolog
 | ?- CTRL-d /* and for consult (user) on Prism */

 consult(user) enables you to enter facts & rules into
the database without storing them in a file. It is not an
effective way to work with Prolog.

PI-11© Gunnar Gotshalks

Queries

◊ A query in Prolog is boolean combination of predicates –
like the antecedent of a rule

> A query is like a rule, except we leave out the
consequent true

 true :- dwarf (alberich).
> becomes simply

 dwarf (alberich).

◊ Use comma (and), semicolon (or) and parenthesis to form
a query expression

◊ Most common is to have a single predicate

PI-12© Gunnar Gotshalks

Queries – 2

◊ Answer is a binding of the variables that make the
query expression true – if no variables then the answer
is yes. If no such binding exists, the answer is no

◊ The database is searched to match the query (similar to
the Lisp database program)

◊ The search
» Uses backward chaining
» is depth first
» is sequential through the database from first to last

◊ Try the exercise on ring.pro

PI-13© Gunnar Gotshalks

Structures

◊ Structures are a means of grouping a collection of other
objects
» Structures are also called compound terms, or

complex terms
» The name of a structure is called a functor
» The items within a structure are called components

◊ The general pattern is
 functor (component_1 , component_2 ,

 ...
 component_n)

PI-14© Gunnar Gotshalks

Structures – 2

◊ Components can also be structures – recursive definition
 If component_1 = functor1 (comp1, comp2)

> giving
 functor (functor1 (comp1, comp2),

 component_2 ,
 ...
 component_n)

> from
 functor (component_1 , component_2 ,

 ...
 component_n)

PI-15© Gunnar Gotshalks

Example structures

◊ Books have authors and titles, so we could have
 book (dickens , great_expectations)

◊ People have books. In particular, Leila could have Great
Expectations
 has (leila , book (dickens , great_expectations))

◊ Facts in Prolog are structures where the predicate is the
functor of a structure and the arguments of the predicate
are the components of the structure

PI-16© Gunnar Gotshalks

Characters

◊ Prolog is based on the ASCII character set

◊ Characters are treated as small integers 0 .. 127

◊ Characters may be
» printed
» read from a file or keyboard
» compared
» take part in arithmetic operations

◊ Characters are distinguished as
» printing – visible on the paper
» nonprinting – look like whitespace

PI-17© Gunnar Gotshalks

Operators

◊ All predicates in Prolog are functors, even , ; and :-
> A rule such as

 dwarf (Person) :- brother (Person , Other) ,
 dwarf (Other) .

> is a shorthand for

 :- (dwarf (Person)
 , , (brother (Person , Other)
 , dwarf (Other)
)
).

PI-18© Gunnar Gotshalks

Operators – 2

◊ Arithmetic and relational operators are also functors, thus
 a + b * c internally is + (a , * (b , c))

◊ This is inconvenient so Prolog permits operators to be
written in standard infix notation
» You will learn later how you can define your own

infix operators

PI-19© Gunnar Gotshalks

Arithmetic

◊ The arithmetic operators do not do arithmetic. No
assignments are made

> It is simply pattern matching – infix operators
are simply a convenience for expressing a
structure

 5 = 4 + 1. ==> no
4 + 1 = 4 + 1. ==> yes
1 + 4 = 4 + 1. ==> no

> Use the operator is to do arithmetic
 5 is 4 + 1. ==> yes 1 + 4 is 4 + 1. ==> no

◊ Arithmetic is only done on the right!

◊ Right hand side is evaluated using arithmetic, then a
pattern match is made with the left hand side.

PI-20© Gunnar Gotshalks

Arithmetic – 2

◊ Can use variables in arithmetic expressions for pattern
matching
 A = 4 + 1. ==> A has the pattern "4+1"

 – spaces removed
 A is 4 + 1. ==> A has as value the pattern 5

> In some Prologs the latter expression simply
responds yes, so try the following.

 A is 4 + 1 , A = 5. ==> A = 5 is the binding for true
> More complex example

 B is 3 + 2 , C is B * 5 , A is C + B
 ==> B = 5, C = 25, A =30

PI-21© Gunnar Gotshalks

Lists

◊ As in Lisp, lists are a ubiquitous structure in Prolog. The
syntax changes (to protect the innocent?)
» Actually () are used to delimit structure

components and to provide precedence for
operators, so using them for lists as well would be
confusing.

◊ The structure is
 [item-1 , item-2 , ... , item-n]
 [a , b , c]
 [a , [b , c] , [[[d]]] , e , []]

◊ The empty list is []

PI-22© Gunnar Gotshalks

Lists - 2

◊ The square bracket notation is a shorthand in place of
using the functor . , dot
 [a , b , c] is really . (a , . (b , . (c , [])))

◊ As in Lisp, lists have a head (car / first) and a tail (cdr /
rest), thus
 [Head | Tail]

◊ But you do not have operators to extract the head and tail,
all you have is pattern matching
» We will look at example Prolog utilities on lists to

demonstrate
◊ Empty list has no head or tail

 [] ≠ [_ | _]

